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PREFACE

By the time this Proceedings is published, almost 2 years will have elapsed since the NASA-

U.C. Berkeley Conference on Spatial Displays and Spatial Instruments held August 31-

September 3, 1987, at the Asilomar Conference Center in Pacific Grove, Califomia. The

publication of the papers included in this proceedings will be a major step toward completion of a

book to be based on material presented at the conference. Though the book itself will have a totally

different organization, this Proceedings represents a kind of elaborate rough draft for it. The

Proceedings are intended to provide not only the first comprehensive record of the conference, but

also a written forum for the participants to provide corrections, updates, or short comments to be

incorporated into the book's chapters.

I wish to sincerely thank again all the conference participants and especially Art Grunwald and

Mary Kaiser, whose assistance and persistent reminders that the paper review must go forward

have been helpful. Others who helped with the administrative details of the conference were Fidel

Lam, Constance Ramos, Terri Bernaciak, and Michael Moultray. We also should thank the staff at

Asilomar and the Ames Technical Information Division. I hope that the personal contacts and

interchange of information initiated at the conference continues into the future and I look forward

during the next 3 months to receiving addenda to be included in the book.

Stephen R. Ellis

Conference Organizer
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PICTORIAL

N90-22919

COMMUNICATION: PICTURES AND THE
SYNTHETIC UNIVERSE

Stephen R. Ellis
NASA Ames Research Center

Moffett Field, California
and

U. C. Berkeley School of Optometry

Berkeley, California

SUMMARY

Principles for the design of dynamic spatial instruments for communicating quantitative infor-

mation to viewers are considered through a brief review of the history of pictorial communication.

Pictorial communication is seen to have two directions: 1) from the picture to the viewer and

2) from the viewer to the picture. Optimization of the design of interactive instruments using pic-

torial formats requires an understanding of the manipulative, perceptual, and cognitive limitations
of human viewers.

PICTURES

People have been interested in pictures for a long time (fig. 1). This interest has two related

aspects. On one hand we have an interest in the picture of reality provided to us in bits and pieces

by our visual and gross body orienting systems-and their technological enhancements. Indeed,

Western science has provided us with ever clearer pictures of reality through the extension of our

senses by specialized instruments.

On the other hand, we also have an interest in pictures for communication, pictures to transmit
information among ourselves as well as between us and our increasingly sophisticated information-

processing machines. This second aspect will be our prime focus, but some discussion of the first
is unavoidable.

It is useful to have a working definition of what a picture is and I will propose the following:

A picture is produced through establishment of a relation between one space and another so that

some spatial properties of the first are preserved in the second, which is its image. A perspective

projection is one of many ways this definition may be satisfied (fig. 2).

The definition may be fleshed out, as cartographers do, by exactly stating what properties are

preserved, but the basic idea is that, though the defining relation of the layout of the picture may

discard some of the original information, this relation is not arbitrary. The challenge in the design

of a picture is the decision what to preserve and what to discard.

Artists, of course, have been making these decisions for thousands of years, and we can learn

much from this history. One curious aspect of it, one that I certainly found strange when I learned
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of it, is that early art was not focused on the preservation of spatial properties that I have asserted

to be the essence of a picture.

As art historians have pointed out, early art was often iconographic, depicting symbols, as

these Egyptian symbols for fractions illustrate, rather than aspiring to three-dimensional realism

(fig. 3) (Gombrich, 1969). This early history underscores a second aspect of pictures which we

must consider: their symbolic content. Because of the potentially arbitrary relation between a

symbol and what it denotes, a symbol itself is not a picture. Symbols, nevertheless, have from the

very beginning wormed their way into many pictures, and we now must live with both the sym-

bolic and geometric aspects of pictorial communication. Furthermore, the existence of the sym-

bolic content of the picture has the useful role of reminding the viewer of the essentially duplicitous

nature of a picture since, though it inherently represents an alternative space, it itself is an object
with a flat surface and fixed distance from the viewer.

The third basic element of pictorial communication is computational. The picture must be cre-

ated. In the past the computation of a picture has primarily been a manual activity limited by the

artist's manual dexterity, observational acumen, and pictorial imagination. The computation has
two separable parts: 1) the shaping and placement of the components of the image, and 2) the ren-

dering, that is, the coloring and shading of the parts (fig. 4).

While this second part is clearly important and can contribute in a major way to the success of a

picture, it is not central to the discussion I wish to develop. Though the rendering of the image can

help establish the virtual or illusory space that the picture depicts and can literally make the subject

matter reach out of the picture plane, it is not the primary influence on the definition of this virtual

space. Shaping and placement are. These elements reflect the underlying geometry used to create

the image and determine how the image is to be rendered. By their manipulation artists can

define----or confuse--the virtual space conveyed by their pictures.

While the original problems of shaping, positioning, and rendering still remain (figs. 5

and 6), the computation of contemporary pictures is no longer restricted to manual techniques.

The introduction of computer technology has enormously expanded the artist's palette, and pro-

vided a new 3D canvas on which to create dynamic synthetic universes; yet the perceptual and cog-

nitive limits of the viewers have remained much the same. Thus, there is now a special need for

artists, graphic designers, and other creators of pictures for communication to understand these

limitations of their viewers. Here is where the scientific interest in the picture of reality and the
engineering interest in the picture for communication converge.

SPATIAL INSTRUMENTS

In order to understand how the spatial information presented in pictures may be communicated,

it is helpful to distinguish between images which may be described as spatial displays and those

that were designed to be spatial instruments. One may think of a spatial display as any dynamic,

synthetic, systematic mapping of one space onto another. A picture or a photograph is a spatial

display of an instant of time (fig. 7). A silhouette cast by the sun is not, because it is a natural phe-

nomenon not synthesized by humans.
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A spatial instrument, in contrast, is a spatial display that has been enhanced either by geomet-

ric, symbolic, or computational techniques to ensure that the communicative intent of instrument is
realized. A simple example of a spatial instrument is an analog clock (fig. 8). In a clock the angu-

lar positions of the arms are made proportional to time, and the viewer's angle-estimation task is

assisted by radial tic marks designating the hours and minutes.

A second aspect of the definition of a spatial instrument, which the clock example also illus-

trates, is that the communicated variable--time--is made proportional to a spatial property of the

display, such as an angle, areas, or length and is not simply encoded as a character string.

The spatial instruments on which we wish to focus attention are generally interactive. That is

to say, the communicated information flows both to and fro between the viewer and the instru-

ment. Some of this bidirectional flow exists for practically all spatial instruments, since movement

of the viewer can have a major impact on the appearance of the display. However, the displays I

wish to consider are those incorporating at least one controlled element, such as a cursor, which is

used to extract information from and input information to the instrument.

Spatial instruments have a long history. One of the first ever made, dating from 60-80 BC,

was an astrolabe-like device uncovered in 1901 near Antikythera, Greece. However, it was not

fully described until the late '50's by De Solla Price (1959), who was able to deduce much of its

principles of operation by x-raying the highly corroded remains (fig. 9). Here the communicated

variables were the positions of heavenly bodies. Nothing approaching the complexity of this

device is known until the 16th Century. It represents a highly sophisticated technology otherwise
unknown in the historical record.

Though many subsequent spatial instruments have been mechanical and, like the Prague town

hall clock (fig. 8), have similarly been associated with astronomical calculations (King, 1978), this

association is not universal. Maps, when combined with mechanical aids for their use, certainly

meet the definition of a spatial instrument (fig. 10). The map projection may be chosen depending

upon the spatial property of importance. For example, straight-line mapping of compass courses

(rhumb lines), which are curved on many maps, can be preserved in Mercator projections

(Dickinson, 1979; Bunge, 1965). Choice of these projections illustrates a geometric enhancement

of the map. The overlaying of latitude and longitude lines illustrates a symbolic enhancement

(figs. 11-13). But more modem media may also be adapted to enhance the spatial information that

they portray, as illustrated by the reference grid used by Muybridge in his photographs

(Muybridge, 1975) (fig. 14).

Contemporary spatial instruments are found throughout the modem aircraft cockpit (fig. 15),

the most notable probably being the attitude direction indicator which displays a variety of signals
related to the aircraft's attitude and orientation. More recent versions of these standard cockpit

instruments have been realized with CRT displays, which have generally been modeled after their

electromechanical predecessors (Boeing, 1983). But future cockpits promise to look more like

offices than anything else (fig. 16). In these offices the computer graphics and CRT display

media, however, allow the conception of totally novel display formats for totally new, demanding

aerospace applications.

For instance, a pictorial spatial instrument to assist informal, complex, orbital navigation in the

vicinity of an orbiting spacecraft has been described (fig. 17) (see also Paper 37, Grunwald and

Ellis, 1988). Other graphical visualization aids for docking and orbital maneuvering, as well as
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otherapplications,havebeendemonstratedbyEyles(1986)(seealsoPaper36). Thesenew
instrumentscanbeenhancedin threedifferentways: geometric,symbolic,or computational.

GEOMETRIC ENHANCEMENT

In general, there are various kinds of geometric enhancements that may be introduced into spa-

tial displays, but their common feature is a transformation of the metrics of either the displayed

space or of the objects it contains. A familiar example is found in relief topographic maps for

which it is useful to exaggerate the vertical scale. This technique has also been used for experi-

mental traffic displays for commercial aircraft (fig. 18) (Ellis, McGreevy, and Hitchcock, 1987).

Another type of geometric enhancement important for displays of objects in 3D space involves
the choice of the position and orientation of the eye coordinate system used to calculate the projec-

tion (fig. 19). Azimuth, elevation, and roll of the system may be selected to project objects of

interest with a useful aspect. This selection is particularly important for displays without stereo-

scopic cues, but all types of displays can benefit from an appropriate selection of these parameters

(Ellis et al., 1985; see also Paper 30, Kim et al., 1987).

The introduction of deliberate spatial distortion into a spatial instrument can be a useful way to

use geometric enhancement to improve the communication of spatial information to a viewer. The

distortion can be used to correct underlying natural biases in spatial judgements. For example,

exocentric direction judgements (Howard, 1982) made of extended objects in perspective displays,

can, for some response measures, exhibit a "telephoto bias." That is to say, the subjects behave as

if they were looking at the display through a telephoto lens. This bias can be corrected by intro-

duction of a compensating wide-angle distortion (McGreevy and Ellis, 1986; Grunwald and Ellis,
1987).

SYMBOLIC ENHANCEMENT

Symbolic enhancements generally consist of objects, scales, or metrics that are introduced into

a display to assist pick-up of the communicated information. The usefulness of such symbolic aids
can be seen, for example, in displays to present air traffic situation information which focus atten-

tion on the relevant "variables" of a traffic encounter, such as an intruder's relative position, as
opposed to less useful "properties" of the aircraft state, such as absolute position (Falzon, 1982).

One way to present an aircraft's position relative to a pilot's own ship on a perspective display

is to draw a grid at a fixed altitude below an aircraft symbol and drop reference lines from the sym-

bol onto the grid (fig. 20). If all the displayed aircraft are given predictor vectors that show future

position, a similar second reference line can be dropped from the ends of the predictor lines.

The second reference line not only serves to clearly show the aircraft the future position of the

aircraft on the grid, but additionally clarifies the symbol's otherwise ambiguous aspect. Inter-

estingly, it can also improve perception of the target's heading difference with a pilot's ownship.

This effect has been shown in an experiment examining the effects of reference lines on egocentric

perception of azimuth (Ellis, Grunwald, and Velger, 1987). I wish to briefly use this experiment
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asanexampleof howpsychophysicalevaluationof imagescanhelpimprovetheirinformationdis-
playeffectiveness.

In thisexperimentsubjectsviewedstaticperspectiveprojectsof aircraft-likesymbolselevated
atthreedifferentlevelsaboveagroundreferencegrid: a low levelbelowtheview vector,amiddle
levelcolinearwith theviewingvector,anda highlevelabovetheview vector. Theaircraftsym-
bolshadstraightpredictorvectorsprojectingforward,showingfutureposition. In onecondition,
referencelinesweredroppedonly from thecurrentaircraftposition;in thesecond,conditionlines
weredroppedfrom bothcurrentandpredictedposition.

The first result of the experiment was that subjects made substantial errors in their estimation of

the azimuth rotation of the aircraft; they generally saw it rotated more towards their frontal plane

than it in fact was. The second result was that the error towards the frontal plane for the symbols

with one reference line increased as the height of the symbol increased above the grid. Most sig-

nificantly, however, introduction of the second reference line totally eliminated the effect of height,

reducing the azimuth error in some cases almost 50% (fig. 21).

More detailed discussion of this result is beyond the scope of this talk; however, these experi-

mental results show in a concrete way how appropriately chosen symbolic enhancements can pro-

vide not only qualitative, but quantitative, improvement in pictorial communication. They also

show that appropriate psychophysical investigations can help designers define their spatial
instruments.

COMBINED GEOMETRIC AND SYMBOLIC ENHANCEMENTS

Some enhancements combine both symbolic and geometric elements. One interesting example

is provided by techniques connecting the photometric properties of objects or regions in the display

with other geometric properties of the objects or regions themselves. Russell and Miles (1987)

(see also Paper 48), for example, have controlled the transparency of points in space with the

gradient of the density of a distributed component and produced striking visualization of 3D objects

otherwise unavailable. These techniques have been applied to data derived from sequences of MRI

or CAT scans and allowed a kind of "electronic dissection" of medical images. Though these

techniques can provide absolutely remarkable images, one of the challenges of their use is the

introduction of metrical aids to allow the viewer to pick up quantitative information from the

photometric transformation (Meagher, 1985, 1987).

COMPUTATIONAL ENHANCEMENTS

While considerable computation may be involved in the rendering and shading of static pic-

tures, the importance of computational enhancement is also particularly evident for shaping and

placing objects in interactive spatial instruments. In principle, if unlimited computational resources

were available, no computational enhancements would be needed. The enhancements are neces-

sary because resources must be allocated to ensure that the image is computed in a timely and

appropriate manner.
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An exampleof acomputationalenhancementcanbefoundin theselectionof atypeof geomet-
ric distortionto useasageometricenhancementin ahead-mounted,virtual-imagecomputerdisplay
of thetypepioneeredbyIvanSutherland(1970)(fig. 22). Distortionsin theimageryusedby such
displayscanbequiteuseful,sincetheyareonewaythattheprominenceof thecomponentsof the
imagecouldbecontrolled.

It is essential,however,thattheenhancementsoperateon thedisplayedobjectsbeforethe
viewingtransformation,because,herethepictureof realitycollideswith apicturefor commu-
nication.Thevirtual-imagepresentationmakesthepictureappearin somewayslike arealspace.
Accordingly,distortinggeometricenhancementsthatarecomputedaftertheviewingtransformation
candisturbvisual-vestibularcoordinationandproducenauseaanddisorientation.Thisdisturbance
showshow differentcomputationalconstraintsdistinguishhead-mountedfrom panel-mounted
formats.

A secondexampleof acomputationalenhancementis shownon theinteractive,proximity-
operations,orbitalplanningtooldevelopedby Art Grunwaldin our laboratory.Whenfirst imple-
mented,theuserwasgivencontrolof thedirectionandmagnitudeof thethrustvector;these
seemedreasonable,sincetheyarethebasicinputsto makinganorbitalchange.Thenonlinearities
andcounterintuitivenatureof thedynamics,however,mademanualcontrolof apredictorcursor
drivenbythesevariablesimpossible.Thecomputationaltrick neededtomakethedisplaytool
workwasallowingtheusertocommandthatthecraft beatacertainlocationatasettimeandallow
thecomputertocalculatetherequiredburnsthroughaninverseorbitaldynamicsalgorithm.This
techniqueprovidedagoodmatchbetweenthehumanuser'splanningabilitiesandthecomputer's
massivecomputationalcapacity.

A thirdexampleof acomputationalenhancementis shownon thesameinteractive,proximity-
operations,orbitalplanningtool. Despitethefact thatthesystemhasbeenimplementedonahigh-
performance68020workstationwith floating-pointprocessoranddedicatedgraphicsgeometry
engine,unworkablylongdelayswouldoccurif theorbitaldynamicswereconstantlyupdatedwhile
theuseradjustedthecursortoplananewway-point.Accordingly,thedynamicscalculationsare
partiallyinhibitedwheneverthecursoris in motion. Thisfeatureallowsafasterupdatewhenthe
useris settingaway-pointpositionandeliminateswhatwouldotherwisebeanannoyingdelayof
about0.3 secwhileadjustingtheway-pointposition.

WhenArthur Grunwaldfinishedthefirst iterationof thisdisplay,wedecidedto nameit. Like
adutiful NASA researcher,hesearchedfor aacronym-somethinglike IntegratedOrbital and

Proximity Planning Systems, or IOPPS for short. This looked to me like it might sound like

OOPS and I thought we should find a better name. I asked him to find maybe a Hebrew name that

would be appropriate. He thought about it for awhile and came up with Navie, or "reliable

prophet." This is perfect, since that is exactly what the display is intended to provide: reliable

prophesy of future position.

But there is another sense in which Navie is a good name. I would like to think that it, and

other display concepts developed in our division and elsewhere, also provide a kind of prophesy

for the coming displays to be used by NASA during future unmanned, and manned, exploration of
air and space.
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Like mosthumanactivities,thisexplorationis notanendeavorthatcanbeautomated;it will
requireiteration,trial anderror,interactivecommunicationbetweenmenandmachinesand
betweenmenandothermen. Themediafor thiscommunicationmustbedesigned.Someof them
will bespatialinstruments.
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Figure 1.- Prehistoric cave painting of animals from southwestern France.
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Figure 2.- Woodcut by Dtirer illustrating how to plot lines of sight with string in order to make a

correct perspective projective.
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Figure 3.- Egyptian hieroglyphic for the Eye of Horus illustrating the symbolic aspect of picto-

graphs. Each part of the eye is also a symbol for a commonly used fraction. These assign-

ments follow from a myth in which the Sun, represented by the eye, was torn to pieces by the
God of Darkness later to be reassembled by Thoth, the God of Learning.

Figure 4.- Leonardo's sketch of two hands using shading to depict depth.
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Figure 5.- Crivelli's Annunciation illustrating strong perspective convergence associated with
wide-angle views that can exaggerate the range of depth perceived in a picture.
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Figure 6.- An engraving by Escher illustrating how the ambiguity of depicted height and depicted

depth can be used in a picture to create an impossible structure, apparently allowing water to
run uphill. © 1988 M. C. Escher heirs/Cordon Art-Baarn-Holland.
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Figure 7.- Urban freeways, a painting by Thiebaud showing an instant of time on a California

freeway.
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Figure 8.- View of the Prague town hall clock, which indicates the positions of heavenly bodies as
well as the time.
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Figure 9.- Fragments of an ancient Greek mechanical device used to calculate the display positions

of heavenly bodies.
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Figure 10.- An old map of the world from the 17th Century.
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Figure 11.- Rhumb-line and great-circle routes between two points on the globe. Note the con-
stant bearing of the rhumb-line route and the constantly changing bearing of the great-circle

route. On the globe the great-circle route is analogous to a straight line and direction Z is the
azimuth of B from A.

KEY
Scale error= along

meridians and parallels

None, i.e. correct
I

length (to scale)

2½% or less

2½% to 10%

-- More than 10%

(and ell

"construction" lines)

Rays of light in
"true projection="

",- J le

"_,. F /e

I

I
J= I

1'v! 1

I
I
I
I
I
I

I
I

t

illllllllll

9O
80

7O

6O

5O
4O

3O
2O

lo
o

Figure 12.- Plate caree projection illustrating the curved path traced by a rhumb line on this format,
i.e., line AEFG.
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Figure 13.- Mercator projection illustrating how a nonlinear distortion of the latitude scale can be

used to straighten out the path traced by a rhumb line.

Figure 14.- Muybridge's photographic sequence of a goat walking. The background grid pro-
vides a reference for measuring the pattern of limb movement.
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Figure 15.- View of the forward panel of a 737 cockpit showing the artificial horizon on the atti-
tude direction indicator.

Figure 16.- An advanced-concepts commercial aircraft cockpit in the Man-Vehicle Systems
Research Facility of NASA Ames Research Center. This artist's conception shows how future
cockpits may resemble ordinary offices.

1-20

ORIGINAL PAGE IS

OF POOR QUALITY



Figure 17.- Sample view from an interactive-graphics-based, planning tool to be used in assisting
informal changes in orbits and proximity operations in the vicinity of a space station.
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Figure 18.- Possible display format for a commercial aircraft cockpit traffic display. The pilot's

own craft is shown in the center of the display. All aircraft have predictor vectors attached
showing future position and have reference lines to indicate height above a reference grid.
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Figure 19.- Illustration of the geometry of perspective projection showing the azimuth and the
elevation of the viewing vector InR, directed from the center of projection COP.

Figure 20,- Five views of sample stimuli used to examine the perceptual effect of raising an air-

craft symbol above a reference grid. The attitude of the symbol is kept constant. Addition of a

second vertical reference line is seen to reduce the illusory rotation caused by the increasing

height above of the grid.
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Figure 22.- Probably the first computer-driven head-mounted viewing device. It was developed
by Ivan Sutherland to give the viewer the illusion of actually being in the synthetic world

defined in the computer.
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SPATIAL PERCEPTION: PRIMARY DEPTH CUES
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IN VIDEO DISPLAYS

Recent development in video technology, such as the liquid crystal displays and shutters,

have made it feasible to incorporate stereoscopic depth into the three-dimensional representations

on two-dimensional displays. However, depth has already been vividly portrayed in video dis-

plays without stereopsis using the classical artists' depth cues described by Helmholtz (1866) and
the dynamic depth cues described in detail by Ittleson (1952). Successful static depth cues include

overlap, size, linear perspective, texture gradients, and shading. Effective dynamic cues include

looming (Regan and Beverly, 1979) and motion parallax (Rogers and Graham, 1982).

Stereoscopic depth is superior to the monocular distance cues under certain circumstances. It

is most useful at portraying depth intervals as small as 5-10 arc seconds. For this reason it is

extremely useful in user-video interactions such as in telepresence. Objects can be manipulated in

3-D space, for example, while a person who controls the operations views a virtual image of the

manipulated object on a remote 2-D video display. Stereopsis also provides structure and form

information in camouflaged surfaces such as tree foliage. Motion parallax also reveals form; how-
ever, without other monocular cues such as overlap, motion parallax can yield an ambiguous per-

ception. For example, a turning sphere, portrayed as solid by parallax, can appear to rotate either

leftward or rightward. However, only one direction of rotation is perceived when stereo-depth is

included. If the scene is static, then stereopsis is the principal cue for revealing the camouflaged

surface structure. Finally, dynamic stereopsis provides information about the direction of motion

in depth (Regan and Beverly, 1979). When optical flow patterns seen by the two eyes move in

phase, field motion is perceived in the fronto-parallel plane. When optical flow is in antiphase
(180 °) motion is seen in the saggital plane. Binocular phase disparity of optical flow as small as 1°

can be discriminated as changes in visual direction of motion in a 3-D space (Beverly and Regan,

1975). This would be a useful addition to the visual stimuli in flight simulators.

Several spatial constraints need to be considered for the optimal stimulation of stereoscopic

depth. The stimulus for stereopsis is illustrated in figure 1. Each peg subtends a visual angle at

the entrance pupils of the eyes, and this angle is referred to as binocular parallax. The difference in
this angle and the angle of convergence forms an absolute disparity. In the absence of monocular

depth cues, perceived distance of an isolated target, subtending an absolute disparity is biased

toward 1.5 meters from the physical target distance. Gogle and Teitz (1973) referred to this as

equidistance tendency. If the target moves abruptly from one distance to another, convergence

responses signal the change of depth (Foley and Richards, 1972); however, smooth continuous

changes in binocular parallax, tracked by vergence eye movements do not cause changes in per-

ceived distance (Erkelens and Collewijn, 1985; Guttmann and Spatz, 1985). Once more than one
disparate feature is presented in the field, differences in depth (stereopsis), stimulated by retinal

image disparity become readily apparent. Stereothresholds may be as low as 2 sec arc, which

ranks stereopsis along with vernier and bisection tasks among the hyperacuities.
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Stereo-sensitivityto a givenangulardepthintervalvarieswith thesaggitaldistanceof the
stimulusdepthincrementfrom thefixationplane.Sensitivityto depthincrementsis highestat the
horopteror fixationplanewherethedisparityof oneof thecomparisonstimuli is zero(Blakemore,
1970). Thisoptimalconditionfor stereopsiswasusedby Tschermack(1930)asoneof four crite-
ria for definingtheempiricallongitudinalhoropter.TheWeberfractiondescribingtheratioof
incrementstereothreshold(arcsec)overthedisparitypedestal(arcmin) (3 sec/min)is fairly con-
stantwith disparitypedestalamplitudesup to 1°. This fractionwasderivedfrom figure2, which
plotsstereothresholdin secondsof arcatdifferentsaggitaldistancesin minutesarcfrom thefixa-
tion pointfor targetsconsistingof verticalbarscomposedof coarseor fine features.A two-
alternative,forcedchoiceis usedto measureajust-noticeabledifferencebetweenadepthincrement
betweenanuppertestbarandalowerstandardbar,bothseenatsomedistancebeforeor behind
thefixation plane.Thebarusedwasanarrow-band,spatiallyfilteredline producedfrom adiffer-
enceof Gaussians(DOG) whosecenterspatialfrequencyrangesfrom 9.5to 0.15cycles/deg
(BadcockandSchor,1985).Whenthesethresholdsareplotted,theslopesof thesefunctions
foundwith differentwidth DOGsarethesameon alogarithmicscale.However,thresholdsfor
low spatialfrequencies(below2.5cpd)areelevatedby aconstantdisparitywhichillustratesthey
areafixedmultipleof thresholdsfoundwithhigherspatialfrequencies.Theseresultsillustratethat
depthstimulishouldbepresentedveryneartheplaneof fixation,which is thevideoscreen.

Stereo-sensitivityremainshighwithin thefixationplaneoverseveraldegreesaboutthepoint
of fixation. Unlike therapidreductionof stereo-sensitivitywith overalldepthor saggitaldistance
from thehoropter,stereo-sensitivityis fairly uniformandatits peakalongthecentral3° of thefix-
ationplane(Blakemore,1970;SchorandBadcock,1985).Figures2 and3illustrateacomparison
of stereo-depthincrementsensitivityfor thisfronto-parallelstereoandthesaggitaloff-horopter
stereothreshold.Alsoplottedin figure3 arethemonocularthresholdsfor detectingvernieroffset
of thesameDOGpatternsatthesameretinaleccentricities.Clearly,stereopsisremainsatitspeak
ateccentricitiesalongthehoropterandthereis apercipitousfall of visualacuityCvVertheim, 1894)

and, as shown here, of vernier acuity over the same range of retinal eccentricities where stereo

increment sensitivity is unaffected (Schor and Badcock, 1985). Thus, stereoacuity is not limited

by the same factors that limit monocular vernier acuity because the two thresholds differ by a factor
of 8 at the same eccentric retinal locus.

In addition to the threshold or lower disparity limit (LDL) for stereopsis, there is an upper
disparity limit (UDL), beyond which stereo depth can no longer be appreciated. This upper limit is

small, being approximately 10 arc min with fine (high-frequency) targets, and somewhat larger

(several degrees) with coarser (low spatial frequency) fusion stimuli (Schor and Wood, 1983).

This depth range can be extended either by briefly flashing targets (Westheimer and Tanzman,

1956) or by making vergence movements between them (Foley and Richards, 1972) to a UDL of

approximately 24 °. The UDL presents a common pitfall for many stereo-camera displays that

attempt to exaggerate stereopsis by placing the stereo-cameras far apart. Paradoxically, this can
produce disparities that exceed the UDL and results in the collapse of depth into the fronto-parallel

plane.

Diplopia is another problem that accompanies large disparities. The diplopia threshold is

slightly smaller than the UDL for static stereopsis, and depth stimulated by large flashed disparities

is always seen diplopically. Normally, this diplopia can be minimized by shifting convergence
from one target to another. However, this is not as easily done with a stereo-video monitor. In

real space the stimulus for vergence is correlated with the stimulus for accommodation. With video

displays, the stimulus for accommodation is fixed at the screen plane while vergence is an
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independentvariable.Becausethereiscross-couplingbetweenaccommodationandvergence,we
arenot completelyfreeto dissociatethesemotorresponses(SchorandKotulak, 1986). With some
musculareffort,a limited degree of vergence can be expected while accommodation is fixed,

depending on the accommodative-convergence ratio (AC/A). When this ratio is high, a person

must choose between clearness and singleness.

Additional problems for stereoscopic depth occur with abstract scenes containing high spatial
frequency surface texture. This presents an ambiguous stimulus for stereopsis and fusion which

can have an enormous number of possible solutions as illustrated by the wallpaper illusion or by a

random-dot stereogram. The visual system uses various strategies to reduce the number of

potential fusion combinations and certain spatial considerations of targets presented on the visual

display can help implement these strategies. A common technique used in computer vision is the
coarse-to-fine strategy. The visual display is presented with a broad range of spatial frequency

content. The key idea here is that there is little confusion or ambiguity with coarse features like the

frame of a pattern. These can be used to guide the alignment of the eyes into registration with f'mer

features that present small variations in retinal image disparity. Once in registration, small
disparities carried by the fine detail can be used to reveal the shape or form of the depth surface.

An essential condition for this algorithm to work is that sensitivity to large disparities be greatest

when they are presented with coarse detail and that sensitivity to small disparities be highest with
fine (high spatial frequency) fusion stimuli. This size-disparity correlation has been verified for

both the LDL and UDL by Schor and Wood (1983). Figure 4 illustrates the variation of stereo-

threshold (LDL) and the UDL with spatial frequency for targets presented on a zero disparity

pedestal at the fixation point. Stereothresholds are lowest and remain relatively constant for spatial

frequencies above 2.5 cycles/deg. Thresholds increase proportionally with lower spatial fre-
quencies. Even though stereothreshold varies markedly with target coarseness, suprathreshold

disparities needed to match the perceived depth of a standard disparity are less dependent on spatial

frequency. This depth equivalence constitutes a form of stereo-depth constancy (Schor and
Howarth, 1986). Similar variations in the diplopia threshold or binocular fusion limit are found by

varying the coarseness of fusion stimuli (Schor, Wood, and Ogawa, 1984b).

Figure 5 illustrates that the classical vertical and horizontal dimensions of Panum's fusion

limit (closed and open symbols, respectively) are found with high spatial frequency targets, but the

fusion limit increases proportionally with the spatial width of targets at spatial frequencies lower
than 2.5 cycles/deg. When measured with high-frequency DOGs, the horizontal radius of PFA

(Panum's fusional area) is 15 rain; and when measured with low-frequency stimuli, PFA equals a

90 ° phase disparity of the fusion stimulus.

The increase in Panum's fusion limit appears to be caused by monocular limitations to spatial

resolution. For example, if the same two targets that were used to measure the diplopia threshold

are both presented to one eye to measure a two-point separation threshold, such as the Rayleigh
criterion, then the monocular and binocular thresholds are equal when tested with spatial frequen-

cies lower than 2.5 cpd. At higher spatial frequencies we are better able to detect smaller separa-

tions between two points presented monocularly than dichoptically. This difference at high spatial

frequencies reveals a unique binocular process for fusion that is independent of spatial resolution.

With complex targets composed of multiple spatial frequencies, at moderate disparities such as

20 min arc, a diplopia threshold may be reached with high spatial frequency components while

stereopsis and fusion may continue with the low spatial frequency components. An example of

this simultaneous perception can be seen with the diplopic pixils in a random dot stereogram whose
coarse camouflaged form is seen in vivid stereoscopic depth (Duwaer, 1983).
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In additionto targetcoarseness,thereareseveralotheraspectsof spatial configuration that

influence stereopsis and fusion. The traditional studies of stereopsis, such as those conducted by
Wheatstone (1838), mainly consider the disparity stimulus in isolation from other disparities at the

same or different regions of the visual field. It is said that disparity is processed locally in this

limiting case, independent of other possible stimulus interactions other than the comparison

between two absolute disparities to form a relative disparity. However, recent investigations have

clearly illustrated that in addition to the local processes, there are global processes in which spatial

interaction between multiple relative disparities in the visual field can influence both stereopsis and

fusion. Three forms of global interactions have been studied. These are disparity crowding, dis-
parity gradients, and disparity continuity or interpolation. These global interactions appear to

influence phenomena such as the variation in size of Panum's fusional area, reductions and

enhancement of stereo-sensitivity, constant errors or distortions in depth perception, and resolution

of a 3-D form that has been camouflaged with an ambiguous surface texture.

Spatial crowding of visual targets to less than 10 arc min results in a depth averaging of

proximal features. This is manifest as an elevation of stereothreshold as well as a depression of the

UDL (Schor, Bridgeman, and Tyler, 1983). The second global interaction, disparity gradient,

depends upon spacing between disparate targets and the difference in their disparities. (Schor and

Tyler, 1981). The disparity gradient represents how abruptly disparity varies across the visual

field. The effect of disparity gradients upon the sensory fusion range has been investigated with
point targets by Burr and Julesz (1980), and with periodic sinuosidal spatial variations in horizontal

and vertical disparity by Schor and Tyler (1981). Both groups demonstrate that the diplopia

threshold increases according to a constant disparity gradient as the separation between adjacent

fusion stimuli increases. Cyclofusion limits are also reduced by abrupt changes in disparity

between neighboring retinal regions (Kertesz and Optican, 1974). Stereothresholds can also be
described as a constant disparity gradient. As target separation decreases, so does stereothreshold,

up to a limit of 15 arc rain separation. Further reduction in separation results in crowding, which
elevates the stereothreshold. The UDL is also limited by a constant disparity gradient (fig. 5). As

spacing decreases, there is a proportional decrease in the UDL. These gradient effects set two

strict limitations on the range of stereopscopic depth that can be rendered by the video display. As

crowding increases, the UDL will decrease. The effect is that targets exceeding the UDL will

appear diplopic and without depth. For example, a top-down picture of a forest which has trees of

uneven height will not be seen as uneven depth if the trees are imaged too closely. To remedy this

problem, the depth should be reduced by moving the stereocameras closer together. In the other
extreme, a shallow slope will not be seen in depth unless it exceeds the gradient for stereothresh-

olds. Even if it does, it may still not be seen if it extends across the entire visual display. Nor-

mally there can be unequal optical errors of the two eyes which produce unequal magnification of

the two retinal images. This aniso magnification produces an apparent tilt of the stereoscopic frame

reference referred to as the fronto-parallel plane. However, this constant depth error is normally

corrected or compensated for perceptually (Morrison, 1977). This perceptual compensation could

reduce sensitivity to wide static displays of a shallow depth gradient.

A third form of global interaction is observed under conditions where disparity differences
between neighboring regions occur too gradually to be detected, such as in the 3-D version of the

Craik-Obrien Cornsweet illusion (fig. 6 by Anstis, Howard, and Rogers, 1978), when stereo pat-

terns are presented too briefly to be processed fully (Ramachandran and Nelson, 1976; Mitchison

and McKee, 1985), or when several equally probable, but ambiguous, disparity solutions are pre-

sented in a region neighboring an unambiguous disparity solution (Kontsevich, 1986). Under all
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of theseconditions,thedepthperceptresultingfrom thevaguedisparityis similar to or continuous
with thedepthstimulatedby themorevisibleportionof thedisparitystimulus.This illustratesthe
principleof depthcontinuityformulatedbyJulesz(1971)andrestatedlaterbyMarr andPoggio
(1979),whichrecentlywasshownby RamachandranandCavanaugh(1985)to includetheexten-
sionof depthto subjectivecontoursin whichnophysicalcontouror disparityexists.

Clearlytherearemanyspatialconstraints,includingspatialfrequencycontent,retinaleccen-
tricity, exposureduration,targetspacing,anddisparitygradient,which whenproperly
adjusted--cangreatlyenhancestereodepthin videodisplays.
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Figure 1. Retinal image disparity based on horizontal separation of the two eyes.
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Figure 6. Perspective sketch of the illusory depth surface. Left part looks apparently nearer than
the right part.
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INTRODUCTION

Most of this article is concerned with limited cue, open-loop tasks in which a human observer

indicates distances or relations among distances. By open-loop tasks I mean tasks in which the
observer gets no feedback as to the accuracy of responses. At the end of the article, I will consider

what happens when cues are added and when the loop is closed, and what the implications of this

research are for the effectiveness of visual displays.

Errors in visual distance tasks do not necessarily mean that the percept is in error. The error

could arise in transformations that intervene between the percept and the response. I will argue,
however, that the percept is in error. I will argue further that there exist post-perceptual transfor-

mations that may contribute to the error or be modified by feedback to correct for the error.

METHODS

First, I will describe some experiments on binocular distance perception. The stimuli were
points of light viewed in dark surroundings. These were in or near the horizontal eye-level plane.

The variables that I use are illustrated and defined in figure 1. The angle subtended by straight

lines from a stimulus point to the rotation centers of the eyes is the binocular parallax of that point.

(It is sometimes called the convergence angle or stimulus to convergence.) The binocular parallax

and the horizontal direction, 0i, serve as coordinates that specify the positions of points in the

plane. The binocular disparity of one point relative to another is defined as the binocular parallax

of the first, minus the binocular parallax of the second. Note that binocular disparity is a signed

quantity; a farther point has a negative disparity relative to a nearer one. The two open dots corre-

spond to the perceived positions of r and i. The binocular parallax of the perceived position of a

point is called the effective binocular parallax of the point. The difference between two effective

binocular parallaxes is an effective binocular disparity. These perceptual variables are defined in

the same way as the corresponding physical variables except that perceived distance, D', is substi-
tuted for physical distance, D, in each equation. I assume that perceived horizontal direction equals

physical horizontal direction. There is evidence that this is correct under the conditions of my

experiments.

Some of the experiments I will describe were done with stimulus points at different dis-

tances. Others were done by simulating the distance dimension stereoscopically. If the stimulus to
vergence is not grossly different than the stimulus to accommodation, the results are very similar.

Some of the experiments employed a fixation point; others allowed the observers to move their

eyes freely. When disparities are small, the results are again very similar.
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RELATIVE DISTANCE TASKS

I will describe performance on two classes of distance tasks. The first are called relative dis-

tance tasks; they are tasks in which an observer adjusts the position of light points by remote con-

trol until they satisfy some relative distance criterion (Foley, 1978, 1980). Examples of such

criteria are shown in figure 2. In each case the view is from above; the oval represents the

observer's head and the dots represent stimulus lights. In the apparent fronto-parallel plane

(AFPP) task, one point of light is fixed and the observer moves other lights so that they appear to

lie in the vertical plane through the fixed light that is parallel to the vertical plane through the eyes

or, in other words, a plane that is perpendicular to straight ahead. The apparent equidistant circle

(AEDC) task is very similar, except that the lights are set so that they are perceived to lie on a circle

with the observer at the center. In the apparent distance bisection (ADB) task, one point is fixed

and the observer adjusts a second point so that the distance between the two points is perceived to

equal the distance from the observer to the near point.

Typical performances in these tasks are illustrated in the second row for three distances of the

fixed point. In each task there is one distance at which the physical configuration corresponds to

the perceived configuration. This distance is generally within the range of 1-4 m. At other dis-
tances, there are systematic errors in the settings. At far distances, variable points are set too far,

and at near distances, they are set too near, relative to accurate performance. Although there are

individual differences in the magnitude of the errors, errors of this kind are reliably found. (For

many observers, one side of the configuration is set closer than the other (skewing). This can be

accounted for by a very small difference in magnification in the two eyes. This is incorporated in a

general theory of binocular distance perception (Foley, 1980), but it is not considered in this
article.)

I propose that these errors can be explained by the misperception of the egocentric distance to

the fixation point, or, in the absence of a fixation point, to a reference point that depends on the

configuration of points. To test this idea we must consider how the pattern of disparities produced

by the observer compares with the pattern of disparities corresponding to the physical configura-
tion specified by the instructions. By pattern of disparities I mean the function that relates binocu-

lar disparity to direction. The left side of figure 3 shows this function for physically fronto-parallel
planes (PFPP) at different distances and the right side shows the same function for AFPP at

different distances. If all the error in the AFPP settings is due to the misperception of the distance

to the fixation point, then the function for an AFPP should be identical to the function for a PFPP,

but generally this will be a PFPP at another distance. This is what the experiments show. For

example, an AFPP at 1.2 m has less disparity than a PFPP at 1.2 m, but corresponds to the same
disparity pattern as a PFPP at 1.45 m. Patterns of disparities obtained in the AEDC task also cor-

respond closely with disparities produced by physically EDCs at other distances. Thus, the

experimental settings can be accounted for by the hypothesis that the observer misperceives the

egocentric distance to the configuration and produces the pattern of disparities appropriate to the
misperceived distance.

This hypothesis has several important implications. First, the fact that the pattern of dispari-

ties changes with the distance to the fixed point implies that there is an egocentric distance signal

related to the vergence of the eyes, and this egocentric distance signal is not accurate. Second,

effective binocular disparity equals binocular disparity. This is illustrated in figure 1. In general,

the distance to point r will be misperceived. But if r is misperceived, any other point i will also
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bemisperceived,sothatthedifferencebetweentheeffectivebinocularparallaxesequalsthediffer-
encebetweenthebinocularparallaxes.I call this theeffectivedisparityinvarianceprinciple.

Thedatafromrelativedistancetasksmaybeusedto infer theperceiveddistanceto thefixa-
tionpointor to thereferencepoint. Thesimplestway to conceptualizethis is t _imagineamore
completesetof functionson bothsidesof figure3. Then,for eachpatternon theright, we find the
matchingpatternontheleft. Thedistanceon theright is thephysicaldistancethatcorrespondsto
theperceiveddistanceon theleft. Thisperceiveddistanceis aconcavedownwardfunctionof
physicaldistance,asis shownbythesolid lineon theleft sideof figure 4. Whenbothphysical
distanceandperceiveddistancearetransformedto parallaxes,theirrelationbecomeslinear,asis
shownby thesolidline on theright sideof this figure. I call thecurvedfunctionon theleft the
referencedistancefunctionandthelinearfunctionon theright thereferenceparallaxfunction.

EGOCENTRIC DISTANCE TASKS

Next consider a different class of tasks---egocentric distance tasks. An egocentric distance

task is one in which an observer indicates the distance from herself or himself to visual targets

(Foley, 1977, 1985). Several different indicators have been used, but I have relied on two, verbal

reports of perceived distance and pointing with an unseen hand. In the pointing experiments a

horizontal board just beneath the targets prevents the observer from seeing his or her hand or arm.

I will describe two simple experiments.

In the first experiment the stimulus is a single light point in dark surroundings. It is straight
ahead. Pointed distances and reported distances from such experiments are shown in figure 4.

The smooth curves shown have parameters that are close to the average values fitted to the data of

five observers (Foley, 1977). On the left, indicated distance is plotted against physical distance,

and on the right, the same values are plotted as binocular parallaxes. The functions on the left have

the same form as the reference distance function; those on the right, the same form as the reference

parallax functions.

But there is a complication: Verbal and manual indicators do not agree, and neither, in gen-

eral, agrees with the function inferred from the relative distance tasks, which tends to lie between

the verbal and manual functions. Since the indicators do not agree, both cannot correspond to per-

ceived distance. I have defined perceived distance as the distance inferred from the relative dis-

tance tasks. When expressed as parallaxes, this value and the values indicated by pointing and

verbal reports are all linearly related. This means that egocentric distance tasks can be used to test
the implications of the theory. It is very important, however, to distinguish between perceived

distance and indications of it. In figure 4 only the solid lines derived from the relative distance

tasks correspond to perceived distance and reference parallax; the other lines describe indicated

distance and indicated parallax.

When the eyes move freely, there is one point the perceived distance of which is given by the
reference distance function. I call this point the reference point. Perceived distances of all other

points are determined by their disparities relative to this point. There are several ways to determine

the reference point. The most obvious is to measure the effective parallax of each point in the con-

figuration and then determine how these are related to the reference parallax function. This analy-

sis has been carded out only for the case of two-point configurations (Foley, 1985). Here the
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parallaxof thereferencepointis aweightedaverageof theparallaxesof thepoints,with thefarther
pointtendingto receivethegreaterweight. Thusthereferencepointneednotcorrespondto any
point of theconfiguration,althoughsometimesit may.

DISCUSSION

Figure 5 is a schematic diagram illustrating the process of binocular distance perception. The

visual system generates both binocular parallax and binocular disparity signals in response to the

optic array. The binocular parallax signals determine a single reference point and its corresponding

value of effective binocular parallax. Here this is shown as an outflow from an eye movement

control center. For each point i, the disparity of i relative to the reference point is added to the
effective reference parallax to give the effective parallax of the point. This value undergoes an

indicator-specific linear transform to yield the indicated binocular parallax, which, in turn, deter-

mines the response.

When multiple cues are present, including perspective cues, distance perception is more

accurate; however, the evidence indicates that there are systematic errors in distance perception
under most cue conditions. There are several studies that have examined apparent distance bisec-

tion under such conditions. Although results have varied widely, no study has found consistently

accurate bisection over a wide range of distances. The most common result is that the farther

interval is set larger than the nearer one. There are also several studies that have obtained verbal

reports of perceived distance under multiple cue conditions. The data are often fitted with a power

function and the power is generally less than 1. An experiment limited to distances less than
70 cm yielded an accelerating verbal report function and a decelerating pointing response function

(Foley, 1977). When the inverse output transforms derived from binocular experiments are

applied to these data, both verbal and manual responses yield the same parallax function with a

slope of about 0.8. The conclusion is that distance perception is generally inaccurate, even in the

presence of multiple cues.

How can we perform accurately with respect to distance when distance perception is inaccu-

rate? I can only answer this speculatively because the experiments needed to answer it scientifi-

cally have not been done. I hypothesize that we learn to behave accurately on the basis of feed-

back. This learning cannot be once and for all because the errors that it compensates for vary con-

tinuously with changing cue conditions. I hypothesize that the output transforms that I have pro-

posed to explain open-loop performance are modified by feedback to compensate for perceptual
errors.

What implications does this have for the design of visual displays? I would expect that most

visual displays evoke erroneous distance percepts. I expect this because even a three-dimensional

scene with multiple cues evokes erroneous percepts, and most displays both eliminate cues and

introduce cue conflicts, both of which are associated with increasing errors. In principle, it might

be possible to create a display that would evoke accurate percepts, at least in some limited domain,

but I doubt the wisdom of attempting this. The perceptual-motor system is designed to make rapid
compensation for certain forms of error, especially those that can be described by linear transforms

of the reference parallax function. Displays that produce errors of this form should suffice to direct

behavior. But every time a display is used to direct behavior in the real three-dimensional space,
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performancewith feedbackis necessaryto calibratetheoutputtransforms,just asperformance
with feedbackis necessarywhenathree-dimensionalscenedirectsbehavior.
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Figure 2.- Illustration of three relative distance tasks (top) and typical performance for observers

who show no skewing (bottom). The physical configuration corresponds to the perceptual

criterion only at one distance, which is typically between 1 and 4 m. The diagram is not to
scale.
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SUMMARY

The question of how to convey depth most effectively in a picture is a multifaceted problem,

both because of potential limitations of the chosen medium (stereopsis? image motion?), and
because "effectiveness" can be defined in various ways. Practical applications usually focus on

"information transfer," i.e., effective techniques for evoking recognition of implied depth relation-

ships, but this issue depends on subjective judgments which are difficult to scale when stimuli are
above threshold. Two new approaches to this question are proposed here which are based on

alternative criteria for effectiveness.

Paradoxical monocular stereopsis is a remarkably compelling impression of depth which is

evoked during one-eyed viewing of only certain illustrations; it can be unequivocally recognized

because the feeling of depth collapses when one shifts to binocular viewing. An exploration of the

stimulus properties which are effective for this phenomenon may contribute useful answers for the

more general perceptual problem.

Perspective vergence is an eye-movement response associated with changes of fixation point

within a picture which implies depth; it also arises only during monocular viewing. The response
is directionally "appropriate" (i.e., apparently nearer objects evoke convergence, and vice versa),

but the magnitude of the response can be altered consistently by making relatively minor changes in
the illustration. The cross-subject agreement in changes of response magnitude would permit sys-

tematic exploration to determine which stimulus configurations are most effective in evoking per-

spective vergence, with quantitative answers based upon this involuntary reflex. It may well be
that "most effective" pictures in this context will embody features which would increase

"effectiveness" of pictures in a more general sense.

INTRODUCTION

One of the central issues involved in spatial display is the question, "What is the most effective

way to convey three-dimensional depth in a pictorial representation?" This article deals only with a

very restricted approach to that question, being confined to representations without stereopsis and

without image motion; and so the problem addressed here should probably be rephrased, "What is
the third most effective way of conveying depth in pictures?" Such rephrasing seems appropriate
because there can be little doubt that the most effective representations of the third dimension are

those which involve stereopsis; and that the second most effective way to convey a feeling for

depth is through use of image motion: optical flow patterns, image shear, motion parallax and the

like. When both stereopsis and image motion are excluded, one is dealing with no more than third

best; and the rephrased question is in some ways like asking what is the best way to participate in a

footrace, subject to the precondition that the runner's feet be tied together by his shoelaces.
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Nevertheless,thequestionof howbesttoconveythethirddimensionin astaticpictorialrepre-
sentationhasbeenof centralconcernto artistsfor manyhundredsof years;andtheresultof that
interestisanorganizedbodyof technique,collectivelyknownasperspective,to dealempirically
with thatproblem. Onemightwell ask,then,whetherthereis anyhopefor derivingnewanswers
to thisquestiorv--ifthousandsof artists,throughouttheircareers,havebeenexperimentingfor
centurieswith just thisobjectivein mind. Thehonestreply is thatthisarticlehasnonewanswers
to offer, nonewtricksto suggest.Instead,it focusesupontwointerestingphenomenainvolving
theperceptionof andresponseto depthin illustrations--phenomenawhich seemto meto havethe
potentialof providingmorequantitativeanswersto thequestion,"How candepthbemoreeffec-
tively represented?"Thesephenomenasuggestresearchprogramsfor thefuture,whichwould
addressthisquestionwithincertainrestrictedcontexts,andit is conceivablethattheanswersmight
beapplicableto other,moregeneralcontextsaswell. Thehopeis thatsuchresearchmightprovide
general,quantitativerulesfor optimizingthedepthimpressionwhichis conveyedby thestimulus
field in anillustration.

PARADOXICAL MONOCULAR STEREOPSIS

The fast of the phenomena of interest here is a remarkable and relatively little-known sort of

depth perception which was described by the French visual scientist, Clapar&le, in a brief article

published in 1904; he christened this visual experience "paradoxical monocular stereopsis." The
essence of Clapar&te's message is that if certain pictures which illustrate a three-dimensional

scene---drawings, paintings or photographs---are carefully examined with one eye covered, a truly

compelling sense of depth can sometimes be obtained, an effect nearly as striking as looking into a
stereoscope. Once this sort of perception has been achieved, it can be sustained while continuing

to inspect the picture, and one might suspect that it results simply from thinking about and focusing

attention on the illustrated subject matter. It is easy to demonstrate, however, that something

unusual is involved, because the moment that the other eye is opened, to see the picture

binocularly, the anomalous 3-D effect vanishes; the picture flattens out just as suddenly and

completely as when one closes one eye while looking into a stereoscope.

High-quality, well-printed color photographs of outdoor scenes, of the sort found in magazines

like National Geographic and Arizona Highways, often provide good material for demonstrating

this sort of depth perception, but one of the most interesting aspects of paradoxical monocular

stereopsis is how difficult it is to predict whether a given illustration will be effective in evoking the

response. The compelling impression of depth is not simply a response to monocular viewing of

all illustrations which show a three-dimensional scene, but to certain configurations of stimuli.

The question therefore arises, "What is the most effective way to evoke paradoxical monocular

stereopsis with an illustration?" This is, of course, a much more limited question than asking what

is the most effective way to convey depth in a picture, but it may be more tractable. One has avail-

able the clear-cut criterion, "Does the (supplementary) depth impression flatten out, when switch-

ing over to binocular viewing?" Furthemaore, although the best stimuli for paradoxical monocular

stereopsis may not turn out to be fully congruent with the stimuli which are optimal for conveying

a three-dimensional impression during binocular viewing, preliminary evidence suggests that if a

picture is effective in evoking paradoxical stereopsis, it will at least give a satisfying and convinc-
ing impression of depth during binocular viewing.

A search of the published literature indicates that there have apparently been no systematic

investigations of which kinds of pictures best evoke paradoxical stereopsis; and in fact, I have

encountered less than a dozen references, in the entire 80-year interval since Clapar&le's (1904)
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initial descriptionof thephenomenon,in whichthissortof depthperceptionis evenmentioned
(e.g.,Pirenne, 1970; Schlosberg, 1941; Ames, 1925; Streigg, 1923; and the references cited

there). Qualitative preliminary testing indicates that there is good agreement among subjects, in the

sense that certain pictures seem to be very effective stimuli for everyone, so the project of

exploring stimulus optimization should be relatively easy to carry through, with a relatively modest

number of subjects. And if the illustrations which are to be used were to be carefully selected, it

seems very likely that an organized body of rules will emerge which characterize the optimal
stimuli.

PERSPECTIVE VERGENCE

In the brief article in which Clapar&le (1904) described this unusual sort of depth perception,

he also proposed an interesting hypothesis about the mechanisms responsible. He speculated that

during monocular inspection of a picture, the covered eye would be free to make vergence

movements which might correspond to the relative distances implied by the illuslration

(converging, then, for apparently near objects and diverging for more remote ones), just as

changes in vergence accompany binocular inspection of a real, three-dimensional scene. He

pointed out that vergence changes of this sort could not take place during binocular viewing of a
picture because of the demand for fusion; and he further proposed that this sort of postulated ver-

gence movement might be responsible for the compelling sense of depth evoked during monocular

viewing. Apparently there has been no test of Clapar_de's hypothesis, nor even any restatement of

it, in the subsequent 80 years; a recently initiated research program, however, has provided

compelling evidence that Clapar_e was essentially correct in his speculation about eye movements

(Enright, 1987a; Enright, 1987b). Vergence changes of the sort he postulated do, indeed, take

place when inspecting a picture of a three-dimensional scene with one eye covered---though

whether those eye movements are responsible for paradoxical stereopsis remains an open question,

and one which will be much more difficult to investigate.

METHODS

The experimental equipment which was used in this eye-movement research is extremely sim-

ple, both in principle and in practice (Fig. 1). The subject sits with head held Fmn/y in place by a

bite board and headrest while two video cameras monitor eye position from somewhat below the

line of sight. The output of the cameras is combined with an image splitter and recorded for sub-
sequent analysis; the sum of the two distances between iris margins and the image-splitting line is

an index for vergence state. The illustrations to be viewed are mounted at about 30 cm from the

subject's eyes, and an obstruction is placed a few centimeters in front of the nondominant eye, at a

level which hides the picture from that eye, but permits the camera to record eye position. While

viewing the picture monocularly, the subject changes fixation at intervals of 2 to 3 sec, between
points which are at different implied distances away. Single-measurement precision of the record-

ing method is about 6 arcmin for each evaluation of eye position, and averaging results over

repeated tests can further reduce the influence of random measurement error;, but the between-trial

variability within a given test session for a given subject and target is sufficiently large that a more

precise monitoring technique could not appreciably improve the reliability of the estimates of aver-

age response; the variability in the eye movements from one refixation to the next limits precision
of the estimates, as reflected in the standard errors.
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RESULTS

An excerpt from a longer recording is shown in Fig. 2, made while a subject changed fixation

from the upper front comer to the upper back comer of the perspective drawing of a small box

(target illustrated in Fig. 3). Concurrent with the recording, a three-position switch, which was

connected to two tone generators, was activated by the subject to indicate the fLxation point; the

timing of those signals is shown as open and solid bars in Fig. 2. It is, then, quite clear that con-

vergence occurred while fixating on the apparently nearer comer of the box, and divergence while

fixating on the farther comer. A simple summary value for the typical vergence-change response

can be obtained from such a recording, based on measuring one value of vergence state for each

steady-state fixation, and then calculating differences between successive values; in this case, the

average change in vergence, over 20 fixations, was 68 arcmin :1:8 arcmin. In Fig. 3, this sum-
mary value is shown for Subject 1, along with five other values for her, each with this same target,

each recorded on a different day; and values of average vergence change are also shown there for

another eight subjects with this target. Average vergence change, based on the method of cal-

culation, could in principle also be negative (i.e., contrary to the perspective implication of the

drawing); in fact, however, all 24 measured values are positive, and all except one of the results

are statistically significant, most of them at the 0.01 level. In other words, the subjects all showed
consistent vergence changes during changes in fixation point in this drawing; and those vergence

changes corresponded in direction with the relative distances implied by the perspective of the

drawing. For those who may be concerned about the reliability of this simple and unconventional

method of recording eye movements, it is worth mentioning that the basic result of Fig. 3 has now

been replicated for other subjects in two other laboratories, each of them using a fundamentally

different and more familiar measurement technique. I have proposed (Enright, 1987a) that these

oculornotor responses to pictorial representations be called "perspective vergence."

Before considering additional details of the responses which have been measured for other

kinds of illustrations, it seems worthwhile to try to place perspective-vergence responses into some

sort of broader context. A phenomenon which is now called "proximal vergence" has long been

known to visual physiologists, an eye-movement response which has been attributed to
"knowledge of nearness" (Maddox, 1893). Although vergence responses to perspective represen-

tations have not been previously studied, it is probably appropriate to consider perspective ver-

gence to be a subcategory of "proximal vergence" (Hokoda and Ciuffreda, 1983). It is important,

however, to distinguish between these responses and another subcategory known as "voluntary

vergence": some trained subjects can cross or uncross their eyes at will, even in total darkness.

Many lines of evidence indicate, however, that the eye-movement responses to perspective

illustrations are instead the result of an involuntary reflex. It is conceivable---even likely--that

training or an "act of will" might enhance the responses, but fully naive, untrained subjects also

show comparable behavior in their fast test session---even subjects who are fully unaware that

convergence is the appropriate response to objects which are nearby. They show this response

even though they are uninformed about the purpose of the experiment, even though they have no

visual feedback or other clues to tell them whether vergence has changed---much less whether the

response was "as intended." Perspective vergence is an automatic response to components of the

visual stimulus field--truly a reflex. Furthermore, at least certain components of the stimulus field

which evoke this kind of response are apparently not a reflection of learning or prior experience,

but instead represent built-in constraints on the visual systeur--although it seems likely that

"learning" may also play a role--that prior visual experience with our three-dimensional world may

build upon and supplement those components which are "hard-wired" into the system. Because of

the reflex nature of the responses, an evaluation of illustrations, in terms of the magnitude of the

4-4



vergence responses evoked, represents something far more substantial than can be achieved by

asking for subjective opinions about picture quality.

An experimental program has been initiated, designed to determine what features of an illustra-

tion enhance or inhibit this oculomotor response. The results of Fig. 4 summarize some of the

kinds of data which have been obtained, with modest variations on the compositional theme of a

single rectangular box. Despite the large inter-subject differences in response magnitude for a

given picture, as shown in Fig. 3, there are remarkably consistent cross-subject changes in

response magnitude for particular alterations in the picture; hence, the ratio of response for a given

picture to the same subject's response for a standard, represents a reliable way of demonstrating

the relative effectiveness of various representations in evoking perspective vergence. Doubling the

size of the picture in all dimensions, for example, reliably led to an increase of about 50% in

response magnitude (Fig. 4 vs. Fig. 4B); inverting the picture led to a reduction in response

(Fig. 4A vs. Fig. 4C), with 7 of 9 subjects showing smaller vergence changes. A reduction in the

inclination of the box (with only minor other modifications in line spacing) led to a drastic reduc-

tion in response magnitude (Fig. 4B vs. Fig. 4D); for 8 of the 9 subjects, the response was even

smaller than that to the "standard" picture, which shows a box half the size (Fig. 4A). When a

cross-hatched lid was superimposed upon a box which was in the relatively ineffective orientation,

response magnitude increased for all 9 subjects (Fig. 4D vs. Fig. 4E), but when a similar lid was

superimposed on a box with more effective orientation, it tended to reduce the response (Fig. 4A

vs. Fig. 4F; 8 subjects out of 9). In all cases, there was remarkably good cross-subject agreement

in the way in which a given change in the drawing affected magnitude of the response (details in

Enright, 1987a).

One other closely related kind of target has been tested, which is not shown in this figure;

three-dimensional cardboard models of the boxes shown in Figs. 4A and 4D were constructed and

photographed from 30 cm with illumination which produced a distribution of light and shadow,

and prints of those photos, at appropriate scaling, were tested as targets. The rationale for this

approach is that shading might enhance the resulting vergence changes. In these tests there was
indeed a slight but significant increase in response for the box shown with suboptimal orientation

(Fig. 4D), but no significant change---in fact a slight decrease--for the more optimally oriented

box (Fig. 4A).

The vergence responses of this same group of 9 subjects have also been tested with a set of

more complex pictorial representations: photographs which reproduce five classical paintings and

an etching; and those experimental results have offered further hints about the kinds of stimuli

which can be effective in evoking perspective vergence. By using a portrait by Rembrandt, for

example, statistically significant vergence changes in the appropriate direction (nearly as large as

those for the "small-box" drawing [Fig. 3]), were evoked in all 9 subjects by a change in fixation

from the nose to the ear of the portrayed philosopher and back again, although no suggestion of

linear perspective was evident in the picture, and the implied difference in distance between the

fixation points was quite small (ca. 10 cm, at a distance of 2 to 3 m from the viewer). One land-

scape scene evoked strong responses in every subject tested, and another outdoor scene, in which

linear perspective was conspicuous, did not lead to statistically significant results for any of the

subjects. Again, then, there was very good cross-subject agreement, in terms of which artworks
were effective stimuli and which were not.
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DISCUSSION

The cross-subject consistency in terms of response magnitude demonstrates that in measuring

perspective vergence we are dealing with relatively general characteristics of the oculomotor

response system; but the experiments conducted so far do no more than define a few of the dimen-

sions of the multidimensional coordinate system implied in the question, "What is the optimal
stimulus for this response?" There seems to be clear non-additivity (a cross-hatched surface

between fLxation points enhances a response, or it does not, depending on context), which consid-

erably complicates the exploration of these dimensions. Furthermore, it is by no means clear that

the rules which might be derived from a line drawing of a cubical box can be generalized to other

sons of figures; nor do the available data def'me an optimum point in any stimulus dimension.

Consider, for example, the conspicuous effect of flit of the opening on responsiveness (Fig. 4B

vs. 4D): while it seems clear that a 22" tilt (4B) is much more effective than an 11" tilt (4D), there

is presumably a continuous function relating responsiveness to inclination in the iUustrated box,

with a maximum someplace between 0" and 90"; and it may well be that 22" is far removed from

that optimum tilt. The necessary experiments to explore this dimension should be enlightening--

but the existence of nonlinearities cautions against overgeneralization.

The consistently positive responses to the Rembrandt portrait demonstrate that the dimensions

which must be explored in any complete attempt to define optimal stimuli go far beyond the sys-

tems of lines and angles which constitute linear perspective. The opportunity to explore the ques-

tion of stimulus optimization offers exciting promise for the future, but it is self-evident that the

available data do not even adequately define the dimensions of the problem. Beyond the issue of

stimulus optimization, the intriguing possibility exists that perspective vergence responses may

provide an objective metric for evaluating the general effectiveness of an attempt to convey depth in

a picture: that oculomotor responsiveness may prove to be well correlated with subjective percep-

tual responsiveness to pictorial implications of depth. Such a correlation would be a necessarym

but not a sufficient--c.ondition for establishing the validity of Clapar_de's most interesting

speculation: that perhaps vergence movement itself contributes to the perception of paradoxical

monocular stereopsis.
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Figure 2.- Excerpt from a recording made while Subject 1 ahemated monocular fixation between

apparently nearer and apparently farther topside comers in a line drawing of a small cubical box

(picture shown in Fig. 3 and as "Standard" in Figure 4). Bars beneath graph correspond to the

timing of tone signals; solid bars represent fixation on "near" comer, open bars represent

fixation on "far" corner. (Reprinted with permission from Vision Res. 27, J. T. Enright,

"Perspective Vergence: oculomotor response to line drawings," Copyright 1987, Pergamon
Journals Ltd.)
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SEEING BY EXPLORING

Richard L. Gregory
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The classical notion of how we see things is that perception is passive--that the eyes are win-

dows, and in floods reality. This was how the Greeks saw perception, and it is the basis of the

accounts of the seventeenth and eighteenth century Empiricist philosophers. But physiological
work of the nineteenth century cast doubt on this view that perception is passive acceptance of

reality. The doubt arose from discoveries of elaborate neural mechanisms, of the delay of signals,

and of the time required to process the signals and then make decisions. The doubt was fueled by

interest in phenomena of visual and other illusions; for how could passively accepted truth be illu-

sory? It was clear to Hermann von Helmholtz and others and hundred years ago that illusions

suggest active processes of perception, which do not always work quite correctly or appropriately.

This discovery, and surely this was an important discovery, was not all popular with

philosophers--for perception as the principal basis for true statements became suspect. Worse,

evidently perception needed scientific backup (and indeed, what was discovered with instruments

did not always agree with how things seem to the senses), so philosophers lost out to scientists as

the discoverers and arbiters of truth. Fortunately for them, scientists often disagree on their obser-

vations, and how they should be interpreted, so philosophy gradually took on other roles, espe-

cially advising scientists what to do.

Perhaps curiously, perception is not at the present time a popular topic for philosophers. This

must be partly because scientific accounts of perception have now gone a long way away from

appearances. They depend on physiological and psycho-physical experiments (as well as curious

phenomena including various kinds of illusions) which require technical investigation and do not

fall within traditional concepts of philosophy. For example, it has become clear over the last

20 years or so that visual perception works by selecting various features from the environment, by

specialized information channels of the eye and brain. This is an extension of the nineteenth cen-

tury physiological concept of the Specific Energies of nerves, suggested by the founder of modern

physiology Johannes Muller (1801-58). His notion that there are many special receptors and neu-

ral pathways, each giving its own distinct sensation, has recently been confirmed and extended for

touch, hot and cold, and tickle (Iggo, 1982). In vision, various features (such as the position and

orientation of edges, direction and velocity of movement, stereoscopic depth, brightness, and col-

ors) are signaled by dedicated channels having special characteristics for transmitting and analyzing

significant features of the world. There are also "spatial frequency" channels, tuned to separations

of features, which suggest that spectral analysis plays some part in pattern recognition. All this

implies that a great deal of parallel processing goes on in the visual system--leading to integrated

pattem vision in which many sources of information, sensory and stored from the past, come

together--to give powerfully predictive hypotheses, which are our reality of the object world. It

seems appropriate and useful to think of perceptions as "hypotheses" (Perceptual Hypotheses) by

analogy with the hypotheses of science which make effective use of limited data for control and

prediction (Gregory, 1974, 1981).

We may go on to ask further what, perceptually, is an object? What is accepted or seen as an

object depends greatly on use---on what is handled, or what behaves, as a unit. It seems that we
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maptheworld into individualobjectsin infancy,byexploringwith ourhandsanddiscovering
whatcanbepushedor pulledasunits,andgenerallyhowthingsbehaveto usandto eachother.
Thuswhenwereadabook,eachpageis anobject,aswe turnthemseparately;buton theshelf
eachbookisanobject,astheyareselectedandpickedasaunit. Andonaprintedpageletters,
words,sentences,or paragraphsmaybeunits,accordingto how weread.Perceptualunitsareset
upearlyin life, but it is aninterestingpossibilitythatnewstructuringmightbecontinuedthrough-
outadultlife--by continuingto exploretheworldwith ourhandsandeyes.Thenwemightcon-
tinuetheremarkableperceptualandintellectualdevelopmentof childhoodthroughoutlife. Thisis
thehope(onemightalmostsayreligion)of interactive"hands-on"sciencecenters,includingthe
Exploratorium founded by Frank Oppenheimer in San Francisco, and the Exploratory we have

started in Bristol (Gregory, 1986). They allow people of all ages to discover the world of objects

(and something of science and technology, as well as their own perceptions) by active exploration.

The importance of experience through interaction with objects was impressed upon me

25 years ago when my colleague Jean Wallace and I studied the rare case of someone (S. B.)

who, after being effectively blind from infancy, received corneal grafts in middle life. This is the

situation envisaged by John Locke, following a letter he received from his friend Samuel

Molyneux who asked, "Suppose a man born blind, and now adult, and taught by his touch to dis-

tinguish between a cube and a sphere of the same metal .... Could he distinguish and tell which
was the globe, which the cube?" Locke (1690, Bk. II, Chapt. 9, Sect. 8) was of the opinion that

"the blind man, at first, would not be able with certainty to say which was the globe, which the

cube." And later, George Berkeley (1707) said similarly that we should expect such a man not to

know whether anything was "high or low, erect or inverted.., for the objects to which he had

hitherto used to apply the terms up and down, high and low, were such only as affected or were in

some perceived by tough; but the proper objects of vision make a new set of ideas, perfectly dis-

tinct and different from the former, and which can in no sort make themselves perceived by touch."

Berkeley goes on to say that it would take a long time to associate the two. But, contrary to the

expectations of the philosophers, we found that directly after the first operation, S. B. could see

things immediately that he knew from his earlier touch experience; although for many months, and

indeed years, he remained effectively blind for things he had not been able to explore by touch. So

Berkeley's assumption that vision and touch are essentially separate is not correct; knowledge

based on touch is very important for vision. Most dramatically, S. B. could immediately tell the

time by sight from a wall clock on the hospital ward; as he had read time by touch from the hands

of his pocket watch, from which the glass had been removed so that he could feel its hands. Even

more surprising: following the operation he could immediately read uppercase, though not lower-

case letters. It turned out that he had learned uppercase, though not lowercase, letters by touch as a

boy at the Blind School from uppercase letters engraved on wooden blocks. The blind children

were given only uppercase letters, as lowercase was not used at that time for street signs or brass

plates, which it would be useful to read by touching. So the blind school had inadvertently pro-

vided the needed controlled experiment, which suggested that active exploration is vitally important

for the development of meaningful seeing in children.

Most moving, and most informative, was S. B.'s response to seeing a lathe (which he knew

from descriptions) for the first time. Shortly after leaving the hospital, we showed him simple

lathe in a closed glass case at the science museum. Though excited by interest, he made nothing of

it. Then, with the cooperation of the Museum staff, we opened the case to let S. B. touch the

lathe. As reported at the time (Gregory, 1974):
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We led him to the glass case, which was closed, and asked him to tell us what

was in it. He was quite unable to say anything about it, except that he thought the

nearest part was a handle. (He pointed to the handle of the transverse feed.) He

complained that he could not see the cutting edge, or the metal being worked, or

anything else about it, and appeared rather agitated. We then asked a Museum
Attendant for the case to be opened, and S. B. was allowed to touch the lathe. The

result was startling; he ran his hands deftly over the machine, touching first the
transverse feed handle and confidently naming it as a "handle," and then on to the

saddle, the bed and the head-stock of the lathe. He ran his hands eagerly over the

lathe, with his eyes shut. Then he stood back a little and opened his eyes and said:

"Now I've felt it, I can see."

S. B.'s effective blindness to objects he did not know as remarkably similar to clinical agnosia,

and to Ludwig Wittgenstein's (1953) notion of "Aspect Blindness." In our own experience (or

rather lack or it) of ambiguous figures, such as Jastrow's Duck-Rabbit--while it is accepted as a

rabbit, the duck features are scarcely seen, disappearing into aspect blindness. This is also dra-

matic in Rubin's Face-Vases, which disappear in turn, sinking into the ground of the invisibility of

aspect blindness, to emerge from nothing as materializing figures. Thus Wittgenstein (1953,

p. 213) asks of an imaginary aspect-blind person, presented with the reversing-skeleton Necker

Cube figure:

Ought he to be unable to see the schematic cube as a cube? For him it would

not jump from one aspect to another. The aspect-blind will have altogether different

relationship to pictures from ours.

We found that S. B. did not experience reversals of these (to us) ambiguous figures. For him

they were meaningless patterns of lines, and, in general, pictures were hardly seen as representing

objects. From this, I suggest (Gregory, 1981) that perceptual phenomenon of ambiguity should be

highly useful for investigating meaning and understanding.

There was evidence that he learned to conceive and perceive space, not only by handling

objects but also by walking. In the hospital ward he was able to judge distances of objects such as
chairs with remarkable accuracy. But looking down from the window--which was some 40 or

more feet high--he described the distance of the ground as about his own body height. He said

that if he hung from the windowsill with his fingers, he feet would just touch the ground. Blind
people avoid jumping down for they do not know what is (if anything!) below them; they feel care-

fully with their feet first. So he would have had little or no experience of distances below his feet,

except for stairs and occasionally ladders. We may conclude that experience of walking was

necessary for seeing distance. This is borne out by our, normal, loss of Size Scaling looking

down from a high building, when cars and people and so on look like toys, though for the same

horizontal distance they look almost their "correct" sizes.

All this is evidence that perception depends neurally on reading or interpreting sensory signals

in terms of experience and knowledge, or by assumptions (which may, however, be wrong and

misleading to produce illusions (Gregory, 1968, 1980)) of the object world. The Exploratory aim

is to amplify and extend first-hand experience to enrich perception and understanding for children

and throughout adult life. The effectiveness of the hands-on approach for teaching has been ques-

tioned. But in any case, surely capturing interest is the first essential for more formal methods to
be effective. It is hard to believe that learning has to be serious; it is far more likely that play is
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vitally importantfor primatesto learnhowto existin theworld in whichtheyfind themselves.It is
fascinatingto watchchildrenandadultsin thisplay-experimentsituationof individualdiscovery.
Althoughresearchisneededto besure,theycertainlygiveeveryindicationof thinkingandlearn-
ing by doing.

It seemsthatchildrendonotapproachquestionsor experiments from a vacuum; they generally

have performed ideas, which may not be appropriate or coherent, but may be held robustly. They

may be discovered (both by their parent or teacher) by setting up predictions. Thus in the Explor-

atory, experiments with gyroscopes, or the Bernoulli effect, are highly surprising and so reveal

erroneous conceptions. Assumptions may of course also be discovered through questioning, and

spontaneous questions may reveal how children or adults see, or think they see. According to Jean
Piaget and several other authorities, young children hold magical notions of cause, not distin-

guishing between their own responses and the behavior of inanimate objects, and they tend to hold

Aristotelean notions of physics of motion and forces. In 1929, Piaget described children as
believing that all objects capable of movement--such as bicycles, and the sun and moon--are

alive. And Piaget reported many investigations on perception of conservation (or lack of conser-

vation) of matter, finding that most children before the age of 9, when given various shapes of a

lump of clay, do not appreciate conservation of substance. Presumably hands-on experience tends

to correct such errors; but how good are adults? A marketing trick is to use odd-shaped bottles to
make the contents look larger, which fools most people.

Do children, if implicitly, apply the scientific method to generate their understanding of the

world? This was the view of Jean Piaget (1896-1980), the greatest name in the field. Piaget came

to favour of an outright empiricism, where logic itself is learned. In The Child and Reality (1972),
Piaget proposes the following hypothesis (p. 94):

(a) That at every level (including perception and learning), the acquisition of
knowledge supposes the beginning of the subject's (child's) activities in forms

which, at various degrees, prepare logical structures; and (b) therefore that the logi-
cal structures already are due to the coordination of the actions themselves and

hence are outlined the moment the functioning of the elementary instruments are
used to form knowledge.

Piaget offers experiments to show effects of inferences during perceptual development in chil-

dren, showing that perceptions change as inferences change. For example (The Child and Reality,

p. 95): "A young child is shown briefly two parallel rows of four coins, one being spaced out

more than the other: The subject will then have the impression that the longer row has the more

coins." Piaget goes on to say that joining the corresponding coins of each row by lines, or joining
them in other ways, has different effects for different ages or stages of perceptual development.

So Piaget suggests that different inferences about the lines are made, each making the rows of

coins appear somewhat different. He also cites an experiment from his laboratory in which the
numbers 1 and 7 are shown with their tops hidden, and at different orientations. When the 1 is

tilted to the slope of the 7, it is still read as a 1 when ending a sequence likely to be a 1, but other-
wise it is seen as a 7. So probability affects perception in children.

Older children's notions are reported in Children's Ideas in Science, edited by Rosalind Driver,
Edith Guesne, and Andree Tiberghien (1985). This starts with an account by Rosalind Driver of

two 11-year-old boys in a practical class measuring the length of a suspended spring, as equal
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weights are added to a scale pan. In the middle of the experiment one of the boys unlocked the

clamp and moved the top of the spring up the retort stand. He explains:

This is farther up and gravity is pulling it down harder the farther away. The

higher it gets the more effect gravity will have on it because if you just stood over
there and someone dropped a pebble on him, it would just sting him, it wouldn't

hurt him. But if I dropped it from an airplane it would be accelerating faster and
faster and when it hit someone on the head it would kill him.

This reveals the boy's view of gravity, which is not quite ours.

Whether young children ask abstract or philosophical questions has been asked by an American

teacher of philosophy, Gareth Matthews in Philosophy and the Young ChiM (1980). As an exam-

ple, a boy who had often seen airplanes take off, disappearing in the distance, flew for the first

time at the age of 4 years. After takeoff, he turned to his father and said in a puzzled voice:

"Things don't really get smaller up here."

How do children come to derive reality from appearances? Is a single dramatic experience such

as flying for the first time---or discovering that patterns of spectral lines from glowing gases cor-

respond to light from the stars--sufficient for a paradigm change of view or understanding in chil-

dren? Can adults go back to the drawing board to see the world afresh?

For looking at the details of how perception works, it is convenient to consider somewhat sep-

arately the early stages of how patterns and colors are signaled by the retina and analyzed by the

initial stages of the brain's perceptual systems, and then the cognitive (knowledge-based) pro-

cesses of selecting and testing perceptual hypotheses of the objects and situations that we have to
deal with to survive. A particular question that concerns us--and we have no clear answer--is

how the various signaled features finally come together, without obvious discrepancies. For

example, given that color and brightness are signaled by different parallel systems, why don't they

lose their registration to separate and produce spurious edges at borders of objects?

Curiously, our mammalian ancestors did not have effective color vision before the primates,

including ourselves at the top of the evolutionary tree. So it might be expected that for us bright-
ness contrast is more significant than color contrast for recognizing objects, and this is generally

so. The importance of brightness rather than color contrast is clear from the effectiveness of black

and white photography. Switching out the color of a "IV set does little to impair our perception

(apart from watching snooker) except in rather special, though sometimes biologically important,

situations. From this simple experiment we can see that color is useful for spotting red berries in

green foliage, seeing through camouflage, remotely sensing the edibility of fruit and meat, which

could be a major reason why color vision developed in primate evolution. It had already devel-

oped, in various forms, in insects, fishes, and birds, but curiously it was lost for mammals, to be

reinvested in our immediate primate ancestors.

In some of our experiments, we do the converse of switching out the color of a TV set: we

remove brightness differences while preserving color contrast. This gives "isoluminant" displays,

which can be seen only by color vision because there are no brightness differences. We have

developed several techniques for producing color-without-brightness contrast, usually for a pair of

colors, such as red and green. It is important to ensure that they are set to equal brightness for
each observer, for there are individual differences of color sensitivities which, when extreme, are
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color-blindness(or better,"color anomaly")which isusuallyreducedsensitivityto (so-called)red
or greenlight. For theseexperimentsit is importantthatneighboringcolorregionsdonotoverlap,
or havegaps,becausesuchregistrationerrorswouldproducebrightnessdifferencesatthecolor
borders.Soproducingtruly isoluminantdisplayspresentssometechnicalproblems(andit rarely
occursin nature),butsomeof thephenomenacanbeseenin formalcolorprintingwhentheprint
hasthesamebrightnessasits different-colorbackground.Whentheprint andbackgroundhave
thesamebrightness,it is difficult toreadandtheedgesof thelettersappear"jazzy." Theprint is
unstable,movingarounddisconcertingly.In spiteof thelossof stability,anduncertaintyof just
wheretheedgesare,thereis hardlyanylossof visualacuityasmeasuredwith agratingtest,
althoughlettersaremoredifficult toread.Thefactthatletteracuitythoughnotgratingacuityis
impairedsuggeststhatpreciseposition of edges (called "phase" information) is lost at isolumi-

nance, though separations between nearby features are signaled almost normally. Reading is par-

ticularly difficult when letters are closely spaced. They can also lose their individual identifies,

breaking up into unfamiliar units.

Losses may also be of neurally higher-level brain processes. Most striking is the appearance

(or rather, disappearance) of an isoluminant face. This can be shown best with a matrix of red and

green dots as in coarse screen printing: when the two colors are set to isoluminance, the face

immediately loses all expression and looks flat, with meaningless holes where the eyes and mouth

should be. It no longer looks like a face: it becomes meaningless shapes. Although this is a

"subjective" observation, it is unmistakable. It is very strong evidence of drastic perceptual loss

when only color is available, for almost anything is normally accepted as a face. This, indeed,

makes the cartoonist's work possible because just a few lines can evoke an expressive face; so it is
remarkable that face perception is so completely lost with isoluminant color contrast. It is impor-

tant to note that this loss does not occur when a normal brightness-contrast picture is blurred, for

example by being projected out of focus, so this loss of face seems to be a central perceptual

phenomenon.

The kinds of losses that occur with normal observers at isoluminance are strikingly like the
clinical symptoms of amblyopia, or a lazy eye. This "artificial amblyopia" of isoluminance is con-

venient for experiments because it can be switched on and off and compared with the normal vision

in the same individual. Also, we can see what happens and compare our experience with the

reports of people who suffer from amblyopia, which is a help for at least intuitive understanding.

A further and dramatic loss is of a certain kind of stereoscopic depth. The American psycholo-

gist Bela Julesz discovered, over 20 years ago, that when slightly different random dot patterns are

presented, one to each eye, in a stereoscope, regions of dots which are shifted sideways for one

eye are seen as lying at a different distance from the rest of the dots which are not displaced. This

shows that the brain can compare meaningless dot patterns presented to the eyes and compute

depth from small horizontal shiftswwhich normally occurs for different distances, as the eyes

receive slightly different views as they are horizontally separated by a few centimeters. But when

the dots are, for example, green on a red background of the same brightness, this stereoscopic

depth is lost. We are now comparing this dramatic loss of stereoscopic depth for meaningless dot

patterns (which, however, is perhaps never quite complete) with what happens when there are

lines and meaningful objects presented in stereoscopic depth to the two eyes. There is some evi-

dence that edges activate different neural mechanisms from the random dots, because a few people

have "line" but not "random dot" stereo vision. Perhaps also the meaning, or object-significance,

of what is presented may be important in how the brain compares features for perceiving depth.
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Thereis acorrespondingphenomenonfor movement.Whenapairof suchrandomdot figures
arealternated,about10times/sec,andviewedwith oneor botheyes,theshifteddotregionsepa-
ratesfrom therestof thedotsandmovesrightandleft. We find thatwhenthedotsaresetto iso-
luminance,thedisplaceddotsarelostamongtheothersandnomovementis seen(Ramachandran
andGregory,1978).This is remarkable,becausethedotscanbequitelarge,andclearlyvisible
individually,andyet thiskind of stereodepthandmovementarelostwithoutbrightness
information.

Visualchannelsmaybeisolatedin variousways,includingselectiveadaptationto colors
(givingcoloredafterimages);to prolongedviewingof tilted lines(makingverticallineslook tilted
in theoppositedirection);to movement(asin the"movementaftereffect,"whichwasknownto
Aristotle). We haverecentlyfoundthatcontinuousreal movement is signaled by the same neural

channel as discontinuous apparent (or phi) movement, which may be seen when stationary lights

are switched on and off in sequence--provided the gaps in space and time of the apparent move-

ment are not too great (Gregory and Harris, 1984). When the gaps are large (greater than about

10 min arc subtended angle), movement can still be seen, but now it is signaled by a different neu-

ral channel, or cortical analyzing system. This we have found by showing that real movement can

cancel opposite-direction apparent movement. This is done by illuminating a readily rotating sector

disk with stroboscopic short flashes of light set to make it appear to rotate backwards from its true
motion, and also with a variable-intensity continuous light. This produces, say, real clockwise

movement and, at the same time, apparent anticlockwise movement of the disc. These movements
can be set to cancel, or null, but adjusting the relative intensities of the strobe and continuous

lights. At the null point there is only a random jitter, with no systematic movement. The null point

is not affected by the disturbing effect of adapting to prolonged viewing of movement. The move-

ment aftereffect affects the real and apparent movement equally, which is strong evidence that they

are sharing a common channel. The nulling of real against short-range, apparent movement occurs

even though the strobe and the continuous lights have different colors, so the eye's three color

channels share a common movement system.

There is, however, an interesting limit to the real/apparent-movement shared channel. When

the strobe's flash rate is set to give large jumps of the rotating sectors, nulling no longer occurs.

The two movements are now seen passing through each other, simultaneously. These observa-

tions indicate a shared channel for real- and short-range apparent movement, but a separate channel

for long-range movement. It is well known to cartoon film animators that the long-range move-

ment of large jumps between frames has cognitive characteristics, such as being affected by which

features are parts of the same object, or are likely to move separately.

An intriguing question is how the various sources of information from different parallel neural

channels combine to give unified perceptions of objects. Although neural channels have different

characteristics, and in spite of selective adaptations (which affect some channels but not others),

and in spite of distortions (which may be dramatic), we do not experience spurious multiple edges.

This surely requires some explanation. We suggest that misregistrations are avoided by a process

of "border-locking," such that luminance borders pull nearby color edges to meet them (Gregory

and Heard, 1979). So spatial registration discrepancies are prevented, although at the cost of some
distortions, which may be very evident. Presumably, some visual distortion of size and curvature

is not important in nature, although multiple edges, where there should be but one, would be seri-

ously confusing. So, we suggest, registration is maintained by border-locking (where color is
slave to luminance) at the cost of some distortion.
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It turnsout thattheclassicalperspectivedistortionillusions(suchastheMuller-Lyerandthe
Poggendorfillusions)remainessentiallyunchangedwhenpresentedwith theirlineshavingcolor
contrastto their backgrounds,andsetto isoluminance(Gregory,1976).But someillusions,not-
ablytheCafeWall illusion (GregoryandHeard,1979),whichhasnoperspective-depthfeatures,
appearundistortedwhenisoluminant.It seemsthatearlysensoryprocessingis affectedby isolu-
minance(asin theparallellinesof theCafeWall illusion),butthecognitivereading(ormisreading)
of perspectivedepthfrom converginglines,whichcangive spatialdistortions(Gregory,1974),is
unaffectedbyisoluminance--itdoesnotmatterhowtheinformationarrivesfor cognition.

Recently,DavidHubelandMargaretLivingstone(1987)havefoundstrongevidencefor sepa-
ratecorticalsystemsfor representingandanalyzingluminanceandcolor information. It now
seemsthatcolorisprimarily analyzedbyblobsin thethird layerof thestriatecortex,whileorienta-
tions,etc.,signaledby luminancedifferencesareanalyzedby interblobcellsat thisearlystageof
visualprocessing.On amatterof detail,wedisagreewith oneof HubelandLivingstone'sobser-
vations,for, asmentionedabove,we find thattheperspectivedepthdistortionillusionsremainat
isoluminance;butheyclaimthattheseandall perspectivedepthdisappear.This isnotourexpe-
rience,butnodoubtthisdiscrepancywill soonberesolved.
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ACROSS

ABSTRACT

The apparent three-dimensionality of a viewed surface presumably corresponds to several

internal perceptual quantifies, such as surface curvature, local surface orientation, and depth.

These quantifies are mathematically related for points within the silhouette bounds of a smooth,
continuous surface. For instance, surface curvature is related to the rate of change of local surface

orientation, and surface orientation is related to the local gradient of distance. It is not clear to what

extent these 3D quantities are determined directly from image information rather than indirectly
from mathematically related forms, by differentiation or by integration within boundary con-

straints. An open empirical question, for example, is to what extent surface curvature is perceived

directly, and to what extent it is quantitative rather than qualitative. In addition to surface orienta-

tion and curvature, one derives an impression of depth, i.e., variations in apparent egocentric dis-

tance. A static orthographic image is essentially devoid of depth information, and any quantitative

depth impression must be inferred from surface orientation and other sources. Such conversion of

orientation to depth does appear to occur, and even to prevail over stereoscopic depth information
under some circumstances.

INTRODUCTION

One can derive a compelling impression of three-dimensionality from even static, monocular

surface displays. Figure 1, for example, suggests an undulating surface. The three-dimensionality

of this figure can be dramatically enhanced when one removes the visual evidence about the surface

on which the figure is printed. If, say, the pattern is viewed on a graphics display, in a darkened

room, monocularly and without head movements, the apparent three-dimensionality is particularly
vivid, sufficiently so that one could replicate the apparent surface by curving a ruled sheet of paper

and holding it in a particular attitude.

On reflection, it is actually quite curious that a pattern of lines such as those in figure 1 pro-

vides so fixed and stable a percept. There is, after all, an infinity of possible 3D surfaces contain-

ing lines that would project to that 2D pattern. To posit that the pattern corresponds to a particular

surface requires certain, specific, strongly constraining assumptions. A theory has been developed

of the geometric constraints that support such inferential 3D percepts, one that explains how a
range of 3D qualities, such as local surface orientation and curvature might be derived in principle

(Stevens 1981a, 1983b, 1986). But it is difficult to extend such theories to explain more precisely

what 3D information is extracted and internally represented in the process of deriving apparent

three-dimensionality from such a 2D stimulus. It is one thing to discuss perception in terms of

* Supported by Office of Naval Research Contract N00014-87-K-0321.
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"affordances,""cues,"orothercharacterizationsof incidentinformation,andquiteanotherthingto
determinethespecificcourseof processingthattakesincidentinformationintoexplicitly repre-
sentedperceptualquantities.

Theremarkableability toderivesurfaceinformationfrom simplemonocularconfigurationshas
beenquitedifficult to explainadequatelywithinanyof thetraditionalpsychologicalparadigms.
Thedifficulty stems,I believe,from thelackof basicunderstandingaboutwhatconstitutes
"apparentthree-dimensionality."Depthperceptionis anoften-usedtermthatrefersto thepercep-
tionof surfacesandpointsin 3D. Whatdifferentiatestheperceptionof mere2D patternsof stimu-
lationfrom 3Darrangements,seemingly,isperceptionof thethirddimension,namelydepthor
distancefrom theviewerto pointsin space.Gibsoninsightfullyproposedthat"visualspaceper-
ceptionis reducibleto theperceptionof visualsurfaces,andthatdistance,depth,andorienta-
tion...maybederivedfrom thepropertiesof surfaces"(Gibson1950). To Gibson,theterm
"apparentthree-dimensionality"refersto theperceptionof more than merely the "third dimension."

Visual perception clearly developed to operate in the richly redundant visual world. But the very

tittle 3D information in figure 1 hardly compares to the redundant and seemingly unambiguous
wealth of incident information afforded by a natural scene. It might justifiably be relegated to the

domain of so-called "picture perception."

Approaches toward understanding surface perception that attempt to isolate the contribution

provided by a particular cue, such as texture or contours, or motion or stereopsis, have often been
criticized as failing to address enough of the problem. By not embracing the complexity of natural

scenes, it is argued, one fails to examine the system in the environment for which it was designed.

But while one might well fail to observe important phenomena when only examining components

in isolation or in simple combination, by not doing so one might equally fail to observe effects
central to the strategies that allow the system to effectively deal with complexity and redundancy.

If vision is regarded computationally as the construction of internal descriptions of the visual

world, there is no particularly compelling reason to expect qualitatively different modes of visual

processing depending on whether the retinal image derives from a picture or a real scene. If one

does not expect a different mode for "picture perception," one must then explain how an ambigu-
ous and obviously underspecified 2D stimulus can result in a definite and stable 3D percept.

The challenge, then, is to understand our seeming ability to perceive more specifically than is

objectively specified by the stimulus. To Helmholtz, Gregory, and others, this ability stems from

the basic perceptual strategy of "unconscious inference." To mix terminology from traditionally

antagonistic schools of thought on this matter: higher-order variables in the incident optical array

are cues that afford particular 3D inferences. After a while such word play is seen for what it is,
and we should go on to more constructive explorations. Substantial progress will likely come only

with understanding of the nature of the 3D percept, something that has been given remarkably little

attention over the entire history of perceptual studies.

As will be discussed, this task is difficult in theory, because of various mathematical equiva-

lences among different representational forms, and difficult in practice, because of the robustness

of the visual observer in performing psychophysical judgments. Despite the intrinsic difficulty,

however, there is some evidence that surface perception is sufficiently modular and restricted in its

ability to extract and combine 3D information as to be amenable to study using traditional psy-

chophysical methods.
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QUANTIFYING APPARENT THREE-DIMENSIONALITY

Following the usage by Foley (1980), absolute distance will refer to the egocentric range from

an observer to a specific 3D point, which might be a point on a visible surface. Relative distance

refers to a ratio of absolute distances (without knowing the absolute distances, one might know

that one distance is twice another). In this usage depth refers specifically to the difference of

absolute distances to a given point and a reference point. (Hence the depth of a given point relative

to a reference point might be known in absolute units without knowing the overall absolute dis-

tances involved. Also, if the depth at a point were known and the absolute distance to the reference

point were known, their algebraic sum would specify the absolute distance to the given point.)

In addition to scalar distance information at a point, derivatives of distance information specify

the orientation of the tangent plane and about curvature of the surface in the vicinity of a point.
Surface orientation has two degrees of freedom, and is readily described as a vector quantity

related to the normal to the tangent plane (Stevens 1983c). The psychological literature has long

used the magnitude quantity slant to refer to the angle between the line of sight and the local surface

normal (slant varies from 0 to 90°). The other degree of freedom, the tilt of the surface, specifies

the direction of slant, which is the direction to which the normal projects onto the image plane, and

also the direction of the gradient of distance (Stevens 1983a). Since the slant-tilt form aligns with

the direction and magnitude of the local depth gradient, it provides many advantages for encoding

surface orientation, such as allowing for simultaneous representation of precise tilt and imprecise

slant, being closely related to various monocular cues such as shading, texture foreshortening,

motion parallax, and perspectivity, and providing for (Necker-type) ambiguity in local surface ori-
entation as reversals in tilt direction (see Stevens, 1983c).

Derivatives of surface orientation, or higher derivatives of distance, are related to surface cur-

vature (across a continuous, twice-differentiable region). Surface curvature also has two degrees

of freedom in the neighborhood of a surface point, which might be encoded as principle curva-

tures, or their image projections.

The central problem, which I will illustrate momentarily, is that across a continuous surface it
is possible to convert among these different forms by differentiation (in one direction) and integra-

tion (in the other). One source of information about local slant might be used to infer both surface

curvature and depth, and another might indicate curvature information directly. With sufficient

boundary constraints the information provided by any source might be converted to a form compa-
rable with another across a continuous surface. In general, then, it is difficult to determine whether

a given 3D quantity M is derived directly from the image or indirectly from derivatives or integrals
of M.

The mathematical equivalences among these various forms of 3D information leave quite open

the empirical question of to what extent surface curvature is registered directly versus converted

internally (Stevens 1981b; Cutting and Millard 1984; Stevens 1984), and furthermore, the question

of the extent to which this information is represented quantitatively rather than qualitatively

(Stevens 1981a, 1983b, 1986).
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THE 3D INFORMATION CONTENT OF A SIMPLE STIMULUS

Returning to figure 1, what sorts of 3D information can be extracted feasibly? Observe that it

consists merely of a family of parallel curves, interpreted as the orthographic projection of parallel

curves across a continuous surface. Given the nature of orthographic projection, this pattern is

devoid of information about the third dimension (distance). And yet, one sees measurable depth as

well as slant in monocular stimuli consisting of line-drawing renditions of continuous ruled

(developable) surfaces (Stevens and Brookes, 1984a). Both orthographic (as in figure 1) and per-

spective projection were used. Using a randomized-staircase forced-choice paradigm, apparent

slant was measured by varying the aspect ratio of an ellipse that was briefly superimposed on the

monocular surface stimulus. Observers readily interpreted the ellipse as a foreshortened circle

slanted in depth, and by adjusting the aspect ratio it could be made to appear flush on the surface.

The resulting slant judgments were in close correspondence to the predicted geometric slant of the
stimuli.

The apparent depth in these stimuli was then tested by superimposing a stereo depth probe over

the monocular surface. Apparent depth was probed stereoscopically using a device similar to
Gregory's (1968, 1970) "Pandora's Box." A Wheatstone-style stereoscope provided near-field

(38 cm) convergence and accommodation, well within the range of acute stereopsis. After First

fixating a binocular point on an empty field, the monocular stimulus was presented briefly (for as

little as 100 msec) to the dominant eye only, after which a binocular probe was superimposed at a
given stereo disparity over the monocular stimulus for an additional brief interval. Subjects per-

formed a randomized-staircase forced-choice experiment in which the depth of the stereo probe

was compared with that of the monocular surface at various locations. Just as Gregory (1970)
found measurable apparent depth in a variety of illusion figures, minimal renditions of monocular
surfaces, such as figure 1, are also perceived quite measurably in the third dimension.

The experiments suggest that in orthographic projection the visual system can compute from
local surface orientation a depth quantity that is commensurate with the relative depth derived from

stereo disparity. Apparent slant is a measure of the local gradient of depth, i.e., the rate of change

of depth (and being the derivative of distance, slant is independent of the absolute distance to the

surface). Depth might be integrated from slant across the surface, but only up to a constant of

integration. How, then, are monocular and stereo depth coupled so that they can be compared?
The perceptual assumption used to link these two spaces, apparently, is that the absolute distance

of the monocular surface at the given fixation point equals that of the stereoscopic horopter at that

point. This hypothesis seems sound in that whatever surface location is fixated in sharp focus is

likely to lie at zero disparity, since in the near field at least, there is close coupling between ver-
gence and accommodation that brings into sharp focus the (zero disparity) fixation point. The fix-

ated point (seen monocularly in our stimuli but binocularly in normal vision) is thus assumed to be

at the absolute distance of the horopter. With the two depth measures sharing a common zero

intercept, monocular depth from slant, appropriately scaled by the reference distance, could then be

compared to depth from stereo disparity. This conjecture remains to be confirmed empirically.
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DEPTH FROM GRADIENT, CURVATURE, AND DISCONTINUITY
INFORMATION

In addition to demonstrating the perception of three-dimensionality from highly underspecified

stimuli, these observations suggest to us that the visual system has a robust ability to internally

convert one form of 3D information into another mathematically equivalent form. The perception

of depth from the various so-called monocular "depth cues" (such as shading, contours, and tex-

ture gradients) may well provide "direct" information about surface curvature and shape, and only

indirect information about depth.

More generally, we propose that shape properties associated with derivatives of distance,

specifically surface orientation, curvature, and loci of discontinuity, both in depth (edge bound-
aries) and tangent plane (creases), are the primary percepts, and that smoothly varying depth across

continuous regions is recovered subsequently and indirectly (Stevens and Brookes, 1987b,c).

This proposal explains various phenomena concerning apparent depth from stereopsis. The

apparent depth of an isolated bar or point is predicted quite well by the geometry of the binocular

system, with depth a straightforward function of stereo disparity and a reference binocular conver-

gence signal (Foley, 1980). But various depth phenomena have been reported recently in the per-
ception of more complicated surface-like stimuli that are not predicted by such a direct functional

relationship (Gilliam et al., 1984; Mitchison and Westheimer, 1984). Gilliam et al. (1984) argue

that depth derives most readily from disparity discontinuities, and Mitchison and Westheimer

(1984) show that coplanar arrangements of lines result in elevated thresholds for depth detection.

In a series of experiments in which binocular stimuli presented contradictory monocular and stereo
information, we found instances where the stereo information was dramatically ineffective in

influencing the 3D percept (Stevens and Brookes, 1987c). The patterns were line-drawn stereo

depictions of planar surfaces, rendered orthographically and in perspective, and devoid of disparity

discontinuities and disparity contrast (e.g., with a surrounding frame or background). Constant

gradients of stereo disparity, consistent with slanted planes, were introduced that were orthogonal

to or opposite to the monocularly suggested depth gradients. The monocular interpretation domi-

nated in judgments of apparent surface slant and tilt and in 2-point relative depth ordering. Fig-

ure 2, for example, is a stereogram of coplanar lines, with disparities varying linearly in accor-
dance with a slanted plane. The dominant depth impression is the monocular interpretation of a

perspective view of a corridor extended in depth.

We hypothesize that stereo disparity influences the monocular 3D interpretation primarily

where the distribution of disparities indicates surface curvature and depth discontinuities (i.e.,

where disparity varies discontinuously or has nonzero second spatial derivatives). Stereo depth
across surfaces is substantially a reconstruction from disparity contrast, analogous to brightness

from luminance contrast. Consistent with this conclusion are a variety of depth-contrast effects in

stereopsis, such as a brightness-contrast analogue in depth (Stevens and Brookes, 1987b), a
Craik-O'Brien-Cornsweet analog (Anstis et al., 1978), and various depth induction effects (e.g.,

Werner, 1938).
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MOTION

INTRODUCTION

Everyday perception occurs in a context of nested motions. Eyes move within heads, heads

move on bodies, and bodies move in surroundings that are filled with objects, many of which can

themselves move (Gibson, 1966). Motion is omnipresent in perception. Stabilize an image on the

retina and it rapidly becomes imperceptible (Pritchard, 1961). Not only is motion a necessary con-

dition for perception, but it is also a sufficient condition for the perception of a variety of envi-

ronmental properties.

Until recently, spatial instruments had few degrees of freedom with respect to the sorts of
morion-carried information that they could provide. With increasing opportunities to employ ani-

marion, spatial instruments can be crafted that are tied less to artificial conventions and more to the

natural condition of everyday perceptual experience.

The implications of perception research for display design derive from the methods employed

by visual scientists in their investigations of how people extract environmental properties from

optical information. The approach taken in perception research involves a seeking of minimal

stimulus conditions for perceiving these properties. Stimuli that typically evoke relevant percep-

tions are decomposed into minimal information sources, and these sources are evaluated sepa-

rately. It is almost always found that we humans rely on a large variety of information sources in

perceiving any particular aspect of the environment. Knowledge of minimal conditions for

perceiving environmental properties can be utilized in the design of effective and technologically

efficient spatial instruments.

Since motion information is a minimally sufficient condition for perceiving numerous envi-

ronmental properties, its use in spatial instruments eliminates the need to employ most of the con-

ventions typically found in static displays. Moreover, in some contexts animated displays can elicit

more accurate perceptions than are possible for static displays.

In this chapter, we discuss the status of motion as a minimal information source for perceiv-

ing the environmental properties of surface segregation, three-dimensional (3-D) form, displace-

ment, and dynamics. The selection of these particular properties was motivated by a desire to pre-

sent research on perceiving properties that span the range of dimensional complexity.
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SURFACE SEGREGATION

Surface segregation refers to the separation of distinct surfaces in depth. In order to repre-
sent surface segregation on a two-dimensional (2-D) display surface, the surfaces must be distin-

guished by some apparent optical differences. These distinctions can be achieved with either static

images or animated displays; however, only with motion can surface segregation be specified by a

single cue without introducing ambiguous depth-order relations. Moreover, the implicit viewer

assumptions needed to interpret moving displays are derived from the laws of dynamics, and thus
are more fundamental in nature than are those accessed in interpreting static displays.

Perceiving Surface Segregation in Static Images

In pictures, surfaces are typically distinguished by color contrasts produced by differences in

intensity or wavelength. One surface thereby becomes separated from another at an edge.

Figure 1 depicts the familiar faces-vase figure introduced by Rubin (1915). This figure exempli-

ties the inherent figure-ground ambiguity of all static displays. Here, depending upon which is

taken as figure, the vase or the faces, depth-order relations reverse (depth order being a term that
refers to what is in front of what).

In order to resolve this depth-order ambiguity, additional cues must be supplied. One effec-

tive cue is occlusion. As is shown in figure 2, having one surface appear to be partially covered by

another is an effective convention for specifying depth order. It is important to realize, however,
that the disambiguation of figure 2 is achieved only through the activation of implicit assumptions

or biases on the part of the viewer. The viewer must assume that the apparent far surface does not,

in fact, have a notch cut out of it. As the Ames demonstrations on the overlay show, if this

assumption is violated, viewers will see erroneous depth-order relations (Ittelson, 1968).

Another static convention that helps to resolve depth-order ambiguity is the use of familiar

surfaces. In figure 3, the "A" is typically seen in front of the background surface. As figure 1

showed, what is taken as figure-vases or face-is perceived as being in front of the apparent

ground (Rubin, 1915). This perceptual bias can be exploited by representing the intended forward
surface with a familiar figure. However, as with occlusion, this convention relies heavily on

inherent viewer biases. The A is assumed to have been placed atop the surrounding surface, as

opposed to having been cut out of it. This assumption may be in error.

The inclusion of additional cues, such as shading, perspective, or solid modeling, will fur-

ther constrain depth-order interpretations. However, so long as the viewer cannot obtain multiple

perspectives on the objects depicted, the display remains inherently ambiguous. Again, the Ames

demonstrations serve to show that observers can always be made to have erroneous perceptions

whenever they are constrained to view an object from a unique perspective.

Intermediate between static and animated displays are those that include flicker. Wong and
Weisstein (1987) found that surface segregation is observed in displays consisting of randomly

placed dots when a particular region is made to flicker. Moreover, the flickering region usually

appears to be behind adjacent nonflickering regions. Spatial instruments have yet to exploit this

perceptual influence of flicker.
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Perceiving Surface Segregation in Motion Displays

The ability of motion information to specify surface segregation without depth-order

ambiguity was demonstrated by Gibson et al. (1969). They produced movies of randomly tex-

tured surfaces. When the surfaces were superimposed and stationary, segregation could not be
achieved. However, when one or both of the surfaces moved, they separated into distinct surfaces

and their depth order became unequivocal.

It was thought that the ongoing occlusion of the far surface by the near one served as the
essential source of information for the surface segregation demonstration of Gibson et al.

Recently, however, Yonas, Craton, and Thompson (1987) showed that surface segregation could

be achieved without ongoing occlusion occurring at surface edges. They created a computer-
animated display in which surfaces were defined by randomly positioned points of light. As with

the original Gibson et al. display, when the simulated surfaces were stationary, there was no
information suggesting that more than one surface was present; however, when the surfaces

moved, their segregation became apparent. In this case, segregation and depth order were speci-

fied by the relative motion of point-lights on different surfaces, and by the disappearance of the

lights on the far surface when they passed beneath the subjective contour that defined the edge of
the close surface.

There are, of course, implicit assumptions that must be made in interpreting moving displays;

however, they are of a fundamentally different sort than those that were discussed for static pre-

sentations. For static displays, the assumptions are characterized by notions of likelihood and

simplicity. It is highly unlikely that anyone would create a display such as figure 2 with the intent

of depicting a square located behind a notched square. Moreover, by any criterion of simplicity,

the obvious interpretation of figure 2 is the simpler of the two (or three) depth-order alternatives

(see, for example, Leeuwenberg, 1982). For animated displays, the implicit assumptions reflect

fundamental laws of dynamics. Surfaces are not destroyed or brought into being when they pass

in front of, or go beyond, more distant surfaces. Unlike those accessed when viewing static dis-

plays, the assumptions engaged when perceiving animated displays are based upon dynamical
laws.

THREE-DIMENSIONAL FORM

Any 2-D representation of a 3-D object is inherently ambiguous. This is true of both static

and moving displays. The virtue of animated displays, however, is that time can substitute for the

lost spatial dimension.

Implicit viewer assumptions are required to recover 3-D relations from either static or moving

2-D projections. As was found for perceiving surface segregation, those engaged when viewing

animated displays are grounded in the laws of dynamics as opposed to the conventions of artifice.
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Perceiving 3-D Form in Static Displays

Effective means for representing 3-D objects and scenes were discovered by pictorial artists
and evolved over time (Gombrich, 1960). Following Berkeley (1709), these pictorial conventions

have come to be called secondary or pictorial depth cues. Researchers are still attempting to dis-

cover the invented techniques by which artists produced their compelling spatial effects (Kubovy,
1986).

The list of secondary depth cues is a long one; however, all entries share a common origin in

the motivation to overcome the ambiguity inherent in 2-D representations of a 3-D scene. The res-

olution of ambiguity through the implementation of such conventions as solid modeling, perspec-

tive, shading, occlusion, familiarity, and so forth is more apparent than real. Demonstrations,

such as those of Ames (Ittleson, 1968), show that perception can always be in error when inferring

3-D structure from a single 2-D projection. The possibility of such errors reflect, in turn, on the

processing assumptions made when interpreting static displays. As with surface segregation,
assumptions grounded in likelihood and simplicity are prevalent. To these are added various

assumptive geometric conventions (Kubovy, 1986).

Perceiving 3-D Form in Motion Displays

The use of geometry can show that the changing spatial pattern, produced when the image of

a rotating rigid object is projected onto a 2-D surface, uniquely defines the 3-D configuration of the

object. In addition, three projected images of four non-coplanar points undergoing rotation defines
the minimal condition for the recovery of structure from motion (Ullman, 1979).

Wallach and O'Connell (1953) showed that people are able to recover 3-D form when view-

ing 2-D projections of rotating objects. They constructed wire forms and projected their shadows

onto screens. Viewers of these shadows reported that they saw only 2-D configurations of lines

when the wire forms were stationary; however, they accurately reported on the 3-D configurations

when the forms were continuously rotated. Wallach and O'Connell called their demonstration the
Kinetic Depth Effect, or KDE.

Interest in KDE has grown over the years. Braunstein (1962), Doner, Lappin, and Perfetto

(1984), Todd (1982), and many others have investigated the psychophysics of the phenomenon.

Recently, a good deal of research has been directed toward the rigidity assumption.

Recall that transforming a 2-D projection of a rotating form is unique to the form's 3-D

configuration only so long as the form remains rigid. Psychologists are much in doubt as to

whether the human perceptual system actually implements a rigidity assumption when extracting
structure from motion in KDE (Hochberg, 1986).

When the veracity of interpretive assumptions is evaluated, the issue of whether people utilize

a rigidity assumption is less important than that such a dynamical assumption is capable of serving

as the sole basis for the recovery of structure from motion. Unlike the assumptions embodied in

pictorial depth cues, the rigidity assumption is grounded in the following kinematic law: Objects
do not distort when rotated. Our perceptual systems were formed in the context of natural con-

straints. The exploitation of these constraints does not require that they be embodied. The funda-
mental assumptive nature of the rigidity principle is not based upon whether or not it has been
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internalizedbytheperceptualsystem,butratheruponthis fact: Vision evolvedin acontextin
whichthisrigidity assumptionis inviolate.

It must be conceded that, in a few known circumstances, the assumptions of picture percep-

tion interact with those engaged by motion perception. Ames created a trapezoidal surface that

looked like a rectangular window viewed at an angle. When observers viewed it monocularly as it

underwent rotation, they typically reported seeing an oscillating rectangular window rather than a

rotating trapezoid (Ittelson, 1968). It is important to note that this event's 2-D projection is, in
fact, inconsistent with the rectangular percept; however, the strong influence of such pictorial

assumptions as likelihood and simplicity outweigh, in this case, the motion-carried information

defining the actual configuration.

Perceiving 3-D structure from motion information has also been shown to occur for jointed

objects. Johansson (1973) placed point-lights on the joints of people and filmed them as they per-
formed actions in the dark. When shown to observers, these movies were readily perceived as

depicting people. It was later found that between 0.1 and 0.2 sec was a sufficient exposure dura-
tion for perceiving the human form in these f'dms (Johansson, 1976).

Computational theorists have developed effective algorithms for extracting structure from

these jointed events, given certain constraints on the motions of the walkers (Hoffman and

Flinchbaugh, 1982; Webb and Aggarwal, 1982). These computational models implement
assumptions about the local rigidity of moving limbs. In essence, the models assume that the act

of rotating or translating a rod (bones in the case of point-light walkers) does not, itself, change the

rod's length. This assumption is based upon a kinematic law of nature. The perceptual system

may or may not have internalized this law (Proffitt and Bertenthal, 1988); however, it certainly

evolved in a world that is governed by it.

DISPLACEMENT

The motion of an object relative to an observer is referred to as its displacement. Displace-

ment information can be conveyed in static displays only through the use of very artificial conven-

tions. In moving displays, displacement information is presented directly in the natural medium of
time. In addition, the perceptual system effectively segregates those motions specifying form from

those that define observer-relative displacement.

Perceiving Displacement in Static Displays

It is not difficult to represent in a static display the fact that an object is moving. What is dif-

ficult to represent is the future position that an object will achieve over time. Static representations

of motion properties must rely on highly stylized conventions, the most prominent being vector

depictions, such as those shown in figure 4. Interpreting such displays not only requires one to

effectively read the intended meaning of the conventions, but he or she must also be able to men-

tally perform the transformation suggested in the representation. People are not very good at such

tasks. In fact, when people attempt to extrapolate the future position of moving objects that

become occluded behind barriers, they make sizable errors, particularly for complex motion func-

tions (Jagacinski, Johnson, and Miller, 1983).
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Perceiving Displacement in Motion Displays

It is rare in nature for an object to undergo a pure observer-relative translation such that every

object point moves with exactly the same motion. In fact, only when objects move in horizontal

circles around the observer do common linear motions project to the observer's point of observa-

tion; all nonorthogonal distal translations project a rotational component to the observer's view-

point. The perceptual system deals effectively with complex motions by analyzing them into rela-

tive and common motion components (Johansson, 1950). To illustrate this analysis, consider the

perception of a rolling wheel.

As is depicted in figure 4, except for the hub, every point on a rolling wheel follows a com-

plex trajectory belonging to the family of cycloidal curves. These trajectories are referred to as the

event's absolute motions. The perceptual system segregates these motions into two components,

relative rotations and a common-observer relative displacement (Proffitt, Cutting, and Stier, 1979).
This perceptual analysis selects the configural centroid as the center of relative rotations. Thus, for

a rolling wheel, rotations are seen as occurring about the wheel's hub, and the common motion is

seen as the hub's translation. However, if point-lights are attached to an unseen rolling wheel and
the configural centroid of these lights does not correspond to the wheel's hub, then a different

common motion is seen. Again, relative motions are seen as rotations about the configural cen-

troid, but the common motion is, in this case, the prolate cycloidal path followed by this abstract
centroid. This perceptual analysis has also been found to occur for configurations moving in depth

(Proffitt and Cutting, 1979). It has been proposed that the selection of the configural centroid, as

the center for perceived relative motions, reflects a perceptual preference to minimize relative

motions; in centroid relative rotations, all instantaneous relative motions sum to zero (Cutting and
Proffitt, 1982).

Research findings on the perceptual analysis of absolute motions into relative and common

components have two implications for display design. First, object configuration interacts with

displacement perception. Whenever an object undergoes a complex motion, its configural proper-

ties influence the common motions that are observed. Although the effects are somewhat different,

robust configural influences have also been shown to occur in stroboscopically presented apparent

motions (Proffitt et al., 1988). Second, relative and common motions have different perceptual
significances (Proffitt and Cutting, 1980). As is depicted in figure 5, relative rotations are used to

perceptually define 3-D form, whereas common motions are residual to form analysis, and define
observer relative displacements.

DYNAMICS

The laws of dynamics place constraints on the sorts of motions that can occur in nature.

Given these constraints, the patterns observed in natural motions reflect back upon underlying

dynamical properties. The motions of colliding objects are a good example of this reciprocal speci-

fication of dynamic and kinematic properties.

When objects collide, the laws of linear momentum conservation state that post-collision

motions must preserve the event's pre-collision momentum. (For the sake of simplicity, we
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excludeconsiderationsof frictionanddamping.)Giventheselaws,it canbeshownthattheratio
of massesfor theobjectsinvolvedin acollisionarespecifiedbyratiosin their velocities(Runeson,
1977). It hasbeenfoundthatpeoplearerelativelygoodatjudgingmassratioswhenobserving
collisions(ToddandWarren,1982;KaiserandProffitt, 1984).In addition,peopleareableto
accuratelydiscriminatepossiblecollisionsfrom thosethatviolatedynamicalprinciples(Kaiserand
Proffitt, 1987a).

Theseresultsdonotnecessarilyimply thatthehumanperceptualsystemhasinternalized
physicalconservationlaws,andin fact, theresultsof recentstudiesstronglysuggestthat such
lawsarenot inherentto perceptualprocessing(GildenandProffitt, 1989). However,ashasbeen
previouslydiscussedfor surfacesegregationandform perception,our sensorysystemsneednot
embodynaturallawsin orderto takeadvantageof thefactthattheyevolvedin anenvironmentin
whichdynamicallawsarealwaysupheld.Motioninformationis fundamentalbecausedynamical
constraintsshapedthenaturalenvironmentinwhichvisionevolved.

Theinterpretationof staticdisplaysrequireprocessingrolesshapedin thecontextof pictorial
conventions.Theconceptualheritageof staticinformation-processingrulesis reflectedin their
subservienceto cognitivebeliefs. Peopleholdinaccuratecommon-senseviewsaboutnatural
dynamics.Theseerroneousbeliefsarereflectedin theirjudgmentsof static,butnotmoving,
displays.

Perceiving Dynamics in Static Displays

Recently, an intriguing literature has developed on people's naive beliefs about the laws of

dynamics. Called "intuitive physics" by McCloskey (1983), these beliefs influence people's pre-

dictions about natural motions; moreover, they are often at odds with the laws of dynamics.

Figure 6 shows one of the problems used by McCloskey, Caramazza, and Green (1980).

Depicted is a C-shaped tube that is lying flat on a horizontal surface. A ball is rolled through the

tube, and upon exiting, the ball rolls across the surface. Subjects were asked to predict the path

taken when the ball exited the tube. Approximately 45% of the undergraduate subjects who were
asked this question incorrectly stated that the ball would continue to follow a curved path.

McCloskey and his colleagues have conducted numerous similar experiments, all showing that

judgments made about natural object motions often reflect erroneous beliefs.

All of these studies required people to make judgments while looking at pictures. The influ-

ence of intuitive physics beliefs is pervasive only in such static contexts. These beliefs have been

found to have little or no effect on the perception of animated displays.

Perceiving Dynamics in Motion Displays

We replicated McCloskey et al.'s finding with the C-shaped tube problem, using a design in

which observers were asked to judge which of a set of drawn trajectories appeared correct. Then,

using the same design, we showed observers animated simulations of balls rolling through

C-shaped tubes. Upon exiting the tubes, the balls followed a variety of paths. We found that

people almost always chose as correct the natural trajectory when viewing these moving displays,

and judged their erroneous predictions as being anomalous (Kaiser, Proffltt, and Anderson, 1985).
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We havedemonstratedthissuperiorityof motiondisplaystoevokeaccuratedynamicaljudgments
in othercontexts(KaiserandProffitt, 1987b).

Staticrepresentationselicit intuitionsthatreflectcognitivebeliefs. Obviously,peoplewould
havegreatdifficulty gettingaboutin theworld if theirperceptionswerealwaysfled to theirknowl-
edgeof physicalprinciples. A baseballoutfielder,for example,wouldprobablyneversucceedin
catchingaflyball if hewasrequiredtoplanhispursuitusingonly hisknowledgeof physics.

Everydayperceptionsnecessarilyoccurin acontextof naturallyconstrainedmotions. In
suchcircumstances,ourperceptualsystemscanfunctionwithoutrecourseto memorialconcep-
tions. Perceptionis goodin motioncontextbecausemotionis fundamentalto therulesof percep-
tual processing.

CONCLUSIONS

Motion is an effective source of information for perceiving a variety of environmental prop-

erties. Because it is a minimally sufficient information source, it need not be simply added to the

conventions employed in static displays. Rather, motion can replace many of these conventions,

and in some contexts, motion can elicit more accurate perceptions than are possible for static
displays.

Motion information is fundamental to everyday perception. The interpretive assumptions
required to extract structure from motion are based upon the laws of nature--i.e., natural

dynamics--whereas those evoked by static displays are based upon the artificial conventions of

pictorial representations. The advantage that motion displays have over static ones derives from

the heritages of the perceptual processes needed for their interpretation. The perceptual processes

required to extract structure from motion information were formed in the context of dynamical
constraints. The interpretation of static information relies more on perceptual processes that arise

with conceptual development, and thus are grounded in such experientially based notions as
simplicity, familiarity, and geometrical conventions.
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Figure 1.- Rubin's (1915) faces-vase figure.

Figure 2.- Two surfaces are depicted. The one to the left appears to partially occlude the surface to
the fight.
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Figure 3.- The familiar figure, A, appears to be in front of the background surface.

STO L UT E

IONS

COMMON MOTION

Figure 4.- The top panel depicts the absolute motions of three points on a rolling wheel. The

middle panel shows the relative and common motions that are perceived in this event. The

bottom panel depicts the perceived motions for three points on a rolling wheel in which the

configural centroid of the points does not coincide with the wheel's hub.
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Absolute Motions

Relative Motion Common Motion

Event

Form Action

/\
Relative Center- Center-of-Moment

Rotations of-Moment Dynamics

(Static) (Common Observer-

Relative Displacement)

Figure 5.- The perceptual system divides absolute motions into relative and common components.
The relative rotations are used in form analysis, whereas the form's common motion defines
its observer-relative displacement.

Figure 6.- Depicted is a horizontal C-shaped tube through which a ball is rolled. The two drawn

trajectories represent the correct path that the ball takes upon exiting the tube, and a frequently
drawn erroneous path.
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SUMMARY

Observers frequently underestimate the in-depth slant of rectangles under reduction conditions.

This also occurs for slanted rectangles depicted on a flat display medium. Perrone (1982) provides

a model for judged slant based upon properties of the two-dimensional trapezoidal projection of the

rectangle. Two important parameters of this model are the angle of convergence of the sides of the

trapezoid and the projected length of the trapezoid. We tested this model using a range of stimulus

rectangles and found that the model failed to predict some of the major trends in the data. How-

ever, when the projected width of the base of the trapezoidal projection was used in the model,

instead of the projected length, excellent agreement between the theoretical and obtained slant
judgments resulted. The good fit between the experimental data and the new model predictions

indicates that perceived slant estimates are highly correlated with specifiable features in the stimulus

display.

INTRODUCTION

Attempts at depicting surfaces slanted in depth on a flat display medium are often hampered by

a common perceptual illusion which results in underestimation of the true depth. Surfaces appear

to lie closer to the fronto-parallel plane than the perspective projection dictates. This has been a
common finding in a wide range of experiments involving slant perception, starting with Gibson's

study (1950) on texture gradients (e.g., Clark, Smith and Rabe, 1955; Gruber and Clark, 1956;

Smith, 1956; Flock, 1965; Freeman, 1965; Braunstein, 1968; Wenderoth, 1970).

The mode of viewing slanted surfaces under the conditions used in slant perception experi-

ments differs from the way we normally encounter visual slant in our environment (Perrone,

1980). Cutting and Millard (1984) has also questioned the use of slant as a variable in the under-
standing of surface perception. However, slant underestimation remains an interesting phe-

nomenon because the information is present in the stimulus display for the veridical perception of

slant (Perrone, 1982), yet apparently the human visual system does not use that information
correctly.

Theories attempting to explain the underestimation are rare. Gogel (1965) applied his

"equidistance tendency" theory to slant underestimation effects and Lumsden (1980) speculated

that truncation of the visual field by the use of an aperture may be a factor causing underestimation.
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Perrone(1980,1982)hasproposedseveralmodelsof slantperceptionwhichattemptto
accountfor theslantunderestimation.Thispapertestsandmodifiesoneof thesemodels.Our aim
is topinpoint thestimulusfeaturesusedby observerswhenmakingvisualslantestimates.This
wouldprovideusefulinsightsintoareassuchasspatialorientation,pictureperception,andpilot
night-landingerrors(Perrone,1984).

MODEL OF SLANT UNDERESTIMATION

The slant angle v, is obtainable from the two-dimensional projection of the surface onto the

retina. (For a technique using perspective lines, see Freeman, 1966; Perrone, 1982.)

The slant angle is found from the two-dimensional variables given in figure 1 using:

0 = tan-l(tan n/X)f

This equation states that the slant angle, 0, can be derived from the angle of convergence (n) of the

perspective line in the projection, and the distance, X, from the center of the projection out to the

perspective line. In equation 1, f is a known constant and it is the arbitrary distance from the eye to
the theoretical projection plane used to analyze the array of light reaching the eye.

The convergence angle of perspective lines, n, can give the slant angle 0 as long as the correct

distance X is used. Using a value of X greater than the true value will result in a calculated slant

angle less than the actual slant angle, i.e., slant underestimation. Perrone (1980, 1982) proposed a

model which suggested that deviation of the perceived straight-ahead direction results in a judg-
ment of slant based on an incorrect value of X.

Two versions of the model have been proposed:

Model A. Perrone (1982) suggested that because of the reduced viewing conditions and

because of the unusual form of the presenting slant, the observer's perceived straight-ahead direc-
tion deviates from the true straight-ahead (fig. 2) and that the visual system uses the length X'

(equal to the projected length Y) instead of X.

It is proposed that the visual system is attempting to measure the change in width over a square

area of the projection plane, determined by Y, but because there are no perspective lines a distance

X' out from c', the outside edge of the rectangle is used instead. When X' is substituted into
equation (1) instead of X, the equation for perceived slant becomes 13= tan-1 (tan_/X')f. How-

ever, in order to use this equation for predicting perceived slant, we need to replace the two-
dimensional variables (_ and X') with the three-dimensional parameters of the stimulus situation.

This gives the following equation for perceived slant:

_=tan_l [Wsin0(D2-L2sin20)]4 L

(1)

(2)

0 = actual slant

W = actual width of rectangle

8-2



L = half thetotallengthof rectangle
D = distancefrom eyeto centerof rotation

To date,Perrone(1982)hasshownhowthis sortof analysisprovidesacceptablefits to data
collectedby others(e.g.,Clark,Smith,andRabe,1955;Smith,1956),but thesestudieswere
designedto investigateotheraspectsof slantperceptionandsodid not involvedirectmanipulation
of thevariablesintegralto themodel.

Oneproblemwith thisversionof themodelis thatit predictsthatslantoverestimation will

occur when the projected height of the test rectangle (Y) becomes less than the projected half-width

at the axis of rotation (X). However, there have been no published accounts of slant overestima-

tion occurring, but this may simply be because nobody has used test rectangles with the appro-

priate length-to-width ratio.

Model B. (Modified version of Model A). This version proposes that the total base width of

the rectangle (Xb) is used in the evaluation of the slant angle instead of X. This new form of the

model can be interpreted as saying that the observers are basing their slant estimates on the con-

vergence angle, 7t, of perspective lines which they believe to be twice the true distance out from the
center. It may be that it is a difficult and unnatural task for the observer to judge the slant of a

surface which is centered on the median plane of the eye. It is easier if we have a side view or at

least a more oblique view of the slanted surface. The observers may resort to making their judg-

ments on the basis that they have a more extreme or displaced viewpoint than is in fact the case.

Their interpretation of the slant of the rectangle may be based on an assumed view of the rectangle

which is displaced or rotated relative to its true position.

When this error is combined with the proposed deviation of the perceived straight-ahead

(Perrone 1982), the result may be the erroneous use of the total base width of the projected trape-
zoid rather than the correct half-width at the axis of rotation. When the total projected base width

of a slanted rectangle is used to estimate theta from equation 1, the predicted perceived slant angle

is found using

13= tan -1 [tan0 (D;L sin 0)]2 (3)

0 = actual slant

L = half the total length of rectangle

D = distance from eye to center of rotation

TESTING THE MODEL

An experiment was designed to verify which of the two cases (equation 2 or equation 3) best

models the data from human observers in the slant perception task. If it can be established that

specific features of the stimulus display are being used in the slant estimation process, then the

more difficult task of discovering why these particular variables are being used can be attempted.

The model provides a means of narrowing down the choice of possible variables and the combi-

nation in which they are used.
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Experiment

The stimuli were computer-generated two-dimensional perspective representations of rectan-

gular outline figures, presented on a CRT and viewed monocularly through an aperture. These

figures represented rectangles measuring 25 cm wide with the following lengths: 50 cm (condition
1), 25 cm (condition 2), and 15 cm (condition 3). These were depicted to be at a distance of 57 cm

from the subject's eye and slanted backwards away from the observer by varying angles of slant.

The actual slant angles used were 20 ° 40 °, 60 ° and 80 ° measured from the vertical.

The subject reproduced the judged slant of the rectangle on a response device which was

located 90 ° to the right and positioned at eye level. The response device consisted of a thin black

line inscribed on a clear plexiglass strip which was mounted on a circular white metal disk 23 cm in
diameter. Vertical and horizontal black lines were drawn on the disk to provide anchor points

(Wenderoth, 1970). Subjects were 10 paid volunteers, naive as to the aims of the experiment.

Predictions

If Model A is correct, then the slant estimates for the three different conditions should lie along

three distinct curves given in figure 3a. For some of the stimulus conditions, the subjects should

judge the rectangle to be slanted farther back from the fronto-parallel plane than the true position
(slant overestimation). This corresponds to any region of the curves which lies above the dotted

line in figure 3a. If a Model B is correct, the slant estimates for all three conditions should all lie

on approximately the same curve of the shape shown in figure 3b. No slant overestimation should
occur.

Results

The data from the 10 subjects have been plotted in figure 4 along with the predictions from

Model B. For the case in which a tall narrow rectangle was used (Condition 1), the results are

similar to those obtained in past slant perception experiments which used rectangles with a length-

to-width ratio greater than one, (e.g., Smith, 1956). For this condition, both Model A and B give

reasonable predictions for the smaller test angles (see C1 predictions in fig. 3a). However, for the

remaining conditions, the data depart greatly from the Model A predictions and none of the pre-
dicted overestimation of slant occurred.

The mean absolute error between the Model A predictions mad the data over the three conditions

was 13.9 °, (sd = 8.1). For Model B, on the other hand, the mean absolute error was only 2.6 °,

(sd = 1.9). The mean absolute errors from Model A are significantly greater than those from

Model B, (t = 4.5, p < 0.05, 22df) and represent a worse fit between the model predictions and
data.

CONCLUSIONS

Slant underestimation Model A (Perrone 1982) incorrectly predicts overestimation to occur for

rectangles which have a projected length less than half of the base width. In fact, the influence of
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theprojectedlengthof therectangleonslantjudgmentsis minimal. However,ModelB provides
anexcellentfit betweentheexperimentaldataandthepredictions.Thesepredictionsarebasedon
measurablefeaturesof theexperimentalconfiguration.Thereareno freeparameters.ModelB
statesthatthetotalprojectedbasewidthof therectangleisusedinsteadof half theprojectedwidth
at theaxisof rotation.Twoparametersof thetwo-dimensionalprojectionareimportantin theslant
estimationprocess:(1) theangleof convergenceof perspectivelinesand(2) thedistanceof the
perspectivelinesfrom thecenterof theprojection.Thesuccessof ModelB suggeststhehuman
observersmakeerrorsin slantestimatesbecausetheymisperceivethissecondparameter.

Thequestionremainsasto whyhumanobserversuse"incorrect"featuresof thestimulusin
their assessmentof theslantangle. It hasbeenshownthatthecorrectslantangleis obtainable
from theappropriateuseof thevariablesgivenin equation1. Thesevariablesareknownto be
presentin thetwo-dimensionalstimulusreachingtheobserver'seye. Theexperimentaldataare
consistentwith theproposalthatthetotalbasewidthof thetrapezoidalprojectionis usedinsteadof
half theprojectedwidth at theaxisof rotation. However,it doesnot shedanylight asto why this
shouldbethecase.

Furtherresearchisrequiredbeforewecanconcludetheactualmechanismsusedbythehuman
visualsystemin makingslantestimates.In themeantime,sufficientevidenceexiststo conclude
thatslantjudgmentsby anobserverarehighlycorrelatedwith specificmeasurablefeaturesin the
two-dimensionalarrayof light reachingtheobserver'seye. Theslantestimatesexhibita large
amountof errorandoftengreatlyunderestimatethetrueslantangle.This papershowsthat such
errorscannotbeattributedto thefactthatinsufficientinformationexistsin thestimulusfor veridical
slantjudgments.Theinformationis available,but is incorrectlyused.
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Figure 1.- The two-dimensional information reaching the eye is analyzed on a theoretical projec-

tion plane an arbitrary distance f from the eye. All measurements on the projection plane are

made within the plane of the page.
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Figure 2.- Deviation of the perceived straight-ahead results in the analysis being carried out about
c' instead of c. Model A states that the length X' (equal to Y) is used instead of X. Model B

proposes that X b is used instead of X.
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SUMMARY

Spatial displays and instruments are usually used in the context of vehicle guidance, but it is

hard to find applicable spatial formats in information retrieval and interaction systems. This paper

discusses human interaction with spatial data structures and the applicability of the CIE color space

to improve dialogue transparency. A proposal is made to use the color space to code spatially rep-

resented data. The semantic distances of the categories of dialogue structures or, more general, of

database structures, are determined empirically. Subsequently the distances are transformed and

depicted into the color space. The concept is demonstrated for a car diagnosis system, where the

category "cooling system" could, e.g., be coded in blue, the category "ignition system" in red.

Hereby a correspondence between color and semantic distances is achieved. Subcategories can be

coded as luminance differences within the color space.

INTRODUCTION

The increasing dissemination of information technology as well as the expanding complexity

of computer systems require user-friendly interaction techniques. One design goal of high rele-

vance in the context of user friendliness is the transparency of system functions. In general, trans-

parency is defined as a well-structured, consistent, and comprehensible appearance of the system

for its users (Widdel and Kaster, 1986). One way to reach transparency consists of the design of a

suitable menu structure. Especially for occasional and untrained users of computer systems a

menu-based dialogue is of great advantage.

The designer of dialogues has to analyze the characteristics of the expected user group in

order to adapt the dialogue interface to the mental model of the users. Knowledge of specific cog-

nitive human behavior must guide the design of human-computer interaction in general, and of

dialogue structures in particular.

A systematic or intuitive transfer of this basic knowledge of cognitive functions leads to

iconic visualization of information in human-computer interaction. By presenting user commands

and system information in iconic form, as pictures or three-dimensional presentations, better use is

made of human visual capabilities.

9-1



GRAPHICAL DESIGN OF DIALOGUE STRUCTURE

The proposals made in this paper aim at further improving the graphical presentation of dia-

logue structures by considering three-dimensional concepts. This expands earlier work on dia-

logue design performed by Kaster and Widdel (1987). In comparing various dialogue designs,
they used a conventional menu as given in figure la showing a menu with a set of five available

choices. It includes title, menu options, selection codes, and the user query. Alternatively, they

displayed the hierarchical organization of the dialogue structure as a picture. It encloses the total

range of functions or menus offered in the dialogue. This picture is presented in figure lb. The

hypothesis underlying this experimental setup postulated that an interface design using a graphic

conceptual model can facilitate the formation of an appropriate mental model of the interactive

computer system (Bennett, Parasuraman, and Howard, 1984). The experiments of Kaster and

Widdel confirmed this hypothesis and demonstrated that naive computer users can successfully run

the dialogue with this interface.

The dialogue presented in figure 1 was used for experimental reasons and restricted to a rela-

tively low complexity; real applications require much more complex dialogue structures. In terms

of user-friendliness, research activities are focused on the breadth and depth as two relevant

dimensions of dialogue complexity. Intensive and detailed discussions and investigations
(MacGregor and Lee, 1987; Paap and Roske-Hofstrand, 1986) expand this problem area from the

pure interaction field to the more general perspective of searching data bases.

High-resolution, direct-manipulation interfaces have been monochrome for a long time for
technical reasons. As these restrictions are no longer valid, it is about time to consider reasonable

applications of color. Distinct overviews of human factors knowledge about the use of color in

visual displays is given by Davidoff (1987), Murch (1985), and van Nes (1986). In the context of

this paper it will be of particular interest to show in which way color can be used to convey infor-

mation about spatial structures instead of or in addition to 3-D graphics. For this purpose the col-
ormetrics and psychometrics of color will be discussed in the next section.

COLORMETRICS AND PSYCHOMETRICS OF THE COLOR SPACE

Color can be defined by chromaticity and luminance; together they establish the photocolori-
metric space (subsequently more simply called "color-space") as depicted in figure 2. The base

plane described by the coordinates u' and v' defines the chromaticity of a color, while the third
axis L gives the luminance (CIE, 1977). The luminance achievable with a standard TV monitor

varies between 20 and 200 cd/m 2 depending on the color. Typical chromaticity coordinates are

0.42/0.54 for red, 0.12/0.57 for green, and 0.16/0.18 for blue. With these data the solid depicted

in figure 2 roughly describes the color space available on commercial monitors. A color of partic-
ular chromaticity and luminance corresponds to a point in this color space (Kaster, Kraiss, and
Ktittelwesch, 1985).

The number of distinguishable points in the color space can be estimated from the number of

just noticeable differences in chromaticity (jndc) and luminance (jndL).
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Thenumberof justnoticeableluminancedifferences(jndL)is definedby theavailablelumi-
nancerangeandby thesizeof athresholdstep.For thepurposesof thispaperwemakeuseof a
thresholdcontrast CL= 1.05. Thisresultsin (GalvesandBrun, 1975):

jndL = log 1.05= 0.021 (1)

For comfortable discernibility, a value seven times larger usually is applied, i.e.:

jndL* = 7 xjndL = 0.15 (2)

According to (1) a luminance range from 10 to 100 cd/m 2 can accommodate

(log 100 - log 10)/0.021 = 47.6 jndL's.

For the threshold chromaticity difference jndc Galves and Brun (1975) proposes a value of

0.00384 as the smallest color difference the eye can discern. Again, for practical purposes it is

common practice to use a value seven times larger than the threshold for easy discernibility

jndc* = 7 x jndc = 0.027 (3)

As an example we calculate with the numbers given above the distance between red and blue
to be (Au '2 + Av'2) 1/2 = 0.354. Hence, a total of 0.354/0.00384 = 92 jndc's can be accommo-
dated between these two colors. For simultaneous variations in luminance and chromaticity the

number of discernible steps is determined by

jndCL = (jndc + jndL) 1/2 (4)

The photo-colorimetric space depicted in figure 2 offers ample opportunity for the composi-

tion of chromaticity/luminance trajectories. With respect to limited space only two representative

examples are presented here. Tables 1 and 2 give their u',v',L-coordinates together with the

number of jnd's contained in a particular trajectory (see also the corresponding figs. 3 and 4).

From previous experience in experiments with color-coded sensor data, it appears that
observers can make a rather accurate estimate of distances in the color space (Kraiss and

Ktittelwesch, 1984). The number of absolutely discriminable states in the color space is, of

course, much less than the number of jnd's. For chromaticity usually 6 to 9 and for luminance

usually 6 values can be distinguished with sufficient reliability.

SEMANTICS AND COLOR SPACE

Any structure of a dialogue or database has a semantic system of categories underlying the
organization. For example, a car diagnosis system contains the categories electric system, suspen-

sion system, ignition system, cooling system, fuel system, and gear system with appropriate sub-

categories on lower levels. The semantic distances of these categories can be determined empiri-

cally using multivariate methods of similarity scaling. The resulting similarity ratings establish a

spatial structure, or semantic net, that may be used to build menu structures. Roske-Hofstrand and
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Paap(1986)usedthisprocedureto definemenuorganizationsmatchedto thesemanticnetof
expertsfor acockpitinformationsystem.

Semanticdistancescanbedepictedaschromaticitydifferencesin thecolor space(fig. 5). In
ourexamplethecategoriesignition (C) and cooling (D) are separated by a long semantic distance

which finds its equivalent in the long distance from red to blue. The categories electric (A) and

gear (F), having a shorter semantic distance, are assigned to the colors green and cyan.

In selecting colors for menu options or categories, the psychology of color perception must

be taken into account. Besides the correspondence of distances of both spaces, the problem of

association between a category and a color arises, i.e., should category D be colored blue and

category C red or vice versa. This problem can be solved empirically; sometimes appointments are

predefined by tradition. While the association of blue with a cooling system and of red with an

ignition system is evident, this is not the case for yellow (suspension system), green (electric sys-

tem), cyan (gear system), and violet (fuel system).

Luminance as the third dimension of the color space may be used for coding the lower

hierarchical levels of a menu structure or database (fig. 5) while retaining the chromaticity of the

top-level category. Each category coded by a specific chromaticity is varying luminance with cor-

responding lower levels. In figure 5 the cooling system (D1) on the highest level may have a
luminance of 24 cd/m 2. On the second level the cooling system could have, among others, the

subcategories water cooling and air cooling (D2n). They will be assigned the same chromaticity

coordinates, but on the second luminance level of 15 cd/m 2. On the third level a subcategory of
water cooling could be water supply (D3nn) with a possible luminance of 5 cd/m 2.

Another possible application of color for the orientation in a multidimensional data space is

proposed by Korfhage (1986). He describes a browser concept for navigating through a database
by visual support. Browsing is defined as a dynamic search through an information resource, with

no specific goal initially in mind. He models a set of documents as an n-dimensional space and

simulates browsing by a loosely directed traversal of this space. Making use of the Doppler effect,
documents far ahead of the actual search position were color-coded with blue; those far behind

were color-coded with red. The document nearest to the user's plane is represented in yellow;
transition color to blue is green and to red is orange.

CONCLUSIONS

A concept for the use of color to convey spatial information at the user interface was dis-

cussed. It was suggested that the color space can be used to represent spatially distributed or hier-

archically organized data. This implies that an operator can form a corresponding mental color

space model that enables him to associate chromaticity/luminance distances to geometric distances.

Earlier experiments with color-coded sensor data suggest that this is possible. In an example a
possible application of this concept to a car diagnosis database was described.
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Table 1.- Chromaticity/luminance trajectory covering 249 jnd's. Presented are color scale, color

space coordinates, and jnd's.

Reference

4

5

6

7

jnd'scL

48

41

51

59

22

28

U

0,19

0,16

0,28

0,42

0,19

0,12

0,19

0,31

0,12

0,22

0,36

0,37

0,38

0,31

,T_,= 249

L cd / m2

12

28

64

150
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Table 2.- Luminance scales for 6 chromaticities applicable to menu design. Presented are color

scale, color space coordinates, and jnd's.

Reference

2

3

4

5

10

11

12

jnd'scL

67

65

65

65

62

67

u

0,16

0,13

0,12

0,19

0,42

0,12

0,30

0,38

0,37

0,36

0,22

L cd / m2

27

6

150

, 6

150

6

0,28

150

2

42

3

8O

E, = 391
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ii BIId-Spelcher bearbelten
Platz in der BIId-Ablage bereltstellen ...... BER

Bilder in die BJld-Ablage schreiben ........ SCH i

Bilder aus der Blld-Ab_age leson ............ LES

Bild-Komponenten der Bilder auflisten ... LI8

Bilder auf dem Blldschirm darstellen ...... DAFt

Eingabe: D A R

(a}

START

(b)

Figure 1.- Textual menu (a) and corresponding picture of the entire dialogue structure (b) (Widdel
and Kaster, 1986).

9-11
PRECEDING PAGE BLAt_IK NOT FILMF'n



log10L

0,15

10¸

GB

RGB

Ir_ I

I
I
I
I
I

t 'I
I
I
I

\

Figure 2.- The photo-colorimetric space with metrics of Galves and Brun (1975). The axes are
scaled to just noticeable differences (jnd's).
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Figure 3.- Color space trajectory corresponding to the values given in table 1.
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Figure 4.- Color space trajectory corresponding to the values given in table 2.
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(b)

(a) E1 F1
A1

A= electric D= cooling

B= suspension E= fuel

C-- ignition F= gear

Red

A= green (electric) D= blue (cooling)

B = yellow (suspension) E= violet (fuel)

C = red (ignition) F= cyan (gear)

3

;reen

(c)

,,
' _-_' r_-__ '__ '

2

, r_ ' r_ 3
1 = high luminance

2 = medium luminance

3 = low luminance

Figure 5.- (a) Fictitious net of semantic distances for categories in a car diagnosis system.

(b) The semantic net from (a) mapped onto the chromaticity plane. Three luminance levels

are used to accommodate hierarchy subitems (see fig. 2). (c) Two-dimensional dialogue
structure with additional chromaticity/luminance assignments to visualize semantic distances

and hierarchy levels.
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SPATIAL VISION WITHIN EGOCENTRIC AND EXOCENTRIC
FRAMES OF REFERENCE

Ian P. Howard
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York University, Toronto, Ontario

1. INTRODUCTION

Our ability to perceive a stable visual world and judge the directions, orientations and

movements of visual objects is remarkable given that the images of objects may move on the

retina, the eyes may move in the head, the head may move on the body, and the body may move

in space. An understanding of the mechanisms involved requires that definitions of relevant

coordinate systems be as precise as possible. An egocentric frame of reference is defined with
respect to some part of the observer. When both the object being judged and the reference frame

are parts of the body, we have a proprioceptive task. If the object being judged is external to the

body, its position, orientation and movement may be judged with respect to any of three principal

egocentric coordinate systems, an oculocentric frame associated with the eye, a headcentric

frame associated with the head and a bodycentric frame associated with the torso. A reference

frame external to the body is an exocentric frame. In an exocentric task the object being judged

may be part of the body, as when a person points north, or it may be external to the body, as

when a person judges the direction of one object with respect to another. In addition there are
reference frames which combine egocentric and exocentric dements. For instance, when we say

that an object is north of us, we use our own body as the origin of a directional scale which is

also anchored to the world. The same is true when a person says that something is above the

head. Such frames may be referred to as heterocentric frames of reference. These various frames

of reference are listed in table 1 together with examples ofjudgrnents of each type.

Polar coordinates based on meridional angles and angles of eccentricity are commonly used

for the objective specification of the oculocentric position of a visual object. The subjective

registration of the oculocentric position of an object depends on the local sign mechanism of the
visual system. This is the mechanism whereby, for a given position of the eye, each region of the

visual field has a unique (one-to-one) and stable mapping onto the retina and visual cortex. In a

nominal local sign system, stimulation of each retinal location evokes an identifiable response,

but the set of responses is not metrically organized. In an ordinal local sign system, values such

as up and down or left and right are specified, and in an interval system, distances between

objects may be specified. Quantitative judgments about the oculocentric location of an isolated
object require a ratio local sign system, that is, one in which there is a built-in reference point and

fiducial line, such as the fovea and the normally vertical meridian.

The headcentric position, orientation or movement of a visual object may be objectively

specified in terms of its angle of elevation relative to a transverse plane through the eyes, and its

angle of azimuth relative to the median plane of the head. A person making headcentric visual

judgments must take account of both oculocentric and eye-in-head information. The bodycentric

(torsocentric) position or movement of an object may be objectively specified in terms of the

median plane of the head and some arbitrary transverse plane of the body. If no part of the body

is in view, bodycentric judgments require the observer to take account of oculocentric
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information,eye-in-headinformationand informationfrom the neck jointsand muscles

regardingthe positionof the head on the body. Thus theoculoccn_c, headcentricand

bodycentricreferencesystems form ahierarchical,or nested,setof egocentricframes as

indicatedinthe second column of tableI.Ifthe body as well as theobjectbeing judged isin

view, bodycentricjudgments aremuch simplersincethey can be done on a purelyvisualbasis

without theneed to know thepositionsof theeyes or head.Eye-in-head and head-on-body

informationprovided by afferentor efferentneuralsignalscan,atleastin theory,provide

nominal, ordinal,interval,orratiometrics.

Finally, the exocentric position, orientation, or movement of an object is specified with

respect to arbitrary coordinates external to the body. Exocentric judgments about an isolated

visual object require the observer to take account of oculocentric, eye-in-head and head-on-body

information and, in addition, information regarding the position or movement of the body with

respect to an external frame. This may involve associating the position of a seen object with, for

instance, the position of the noise that it is making. This is a multisensory task. In other cases it

may involve relating the position of an object detected by one sense organ with the position of

another object detected by a second sense organ. This is an intersensory task (see Howard, 1982,

Chapter 11, for more details on this distinction). The vestibular system is the only sense organ

that provides direct information about the attitude and movement of the body in inertial space.
The otolith organs respond to the static and dynamic pitch and roll of the head with respect to

gravity; they provide no information about rotation or position of the head around the vertical

axis. The otolith organs also respond to linear acceleration of the body along each of three

orthogonal axes, but cannot distinguish between head tilt and linear acceleration. The semi-

circular canals provide information about body rotation in inertial space about each of three

orthogonal axes. But if rotation is continued at a constant angular velocity, the input from the

canals soon ceases. The integral of the motion signal from the canals can provide information

about the position of the body, but only with respect to a remembered initial position. If there are

two point-objects in view at the same time, exocentric judgments of the distance between them

and their relative motion are possible using only oculocentric information. At least three point-

objects are required for exocentric visual judgments of direction or orientation based solely on
oculocentric information.

In what follows I shall discuss the extent to which perceptual judgments within egocentric

and exocentric frames of reference are subject to illusory disturbances and long-term modifica-

tions. I shall argue that well-known spatial illusions, such as the oculogyral illusion and induced

visual motion have usually been discussed without proper attention being paid to the frame of

reference within which they occur, and that this has led to the construction of inadequate theories
and inappropriate procedures for testing them.

2. THE OCULOCENTRIC FRAME

Any misperception of the oculocentric position or movement of a visual object can arise

only as a result of some disturbance of the retinal local sign system or of the oculocentric

motion-detecting system. In a geometrical illusion, lines are apparently distorted or displaced

when seen in the context of a larger pattern. In a figural aftereffect, a visual test object seen in the

neighborhood of a previously seen inspection object appears displaced away from the position of

the inspection object. Such effects operate only over distances of about one degree of visual
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angle,andtheapparentdisplacementrarelyexceedsavisualangleof afew minutesof arc
(Kohler andWallach,1944).We mustconcludethatthe localsignsystemisrelatively
immutable.This is not surprising,sincethesystemdependsbasicallyon theanatomyof the
visualpathways.Severalclaimshavebeenmadethatoculocentricdistortionsof visualspacecan
be inducedby pointingwith hiddenhandto visual targetsseenthroughdisplacingprisms
(Cohen,1966;Held andRekosh,1963).Othershaveclaimedthattheseeffectswereartifactual,
andweareleft with noconvincingevidencethatoculocentricshiftscanbe inducedin this way.
(SeeHoward, 1982,p, 501for amoredetaileddiscussionof this subject.)

Themovementaftereffect is awell-knownexampleof what is almost certainly an

oculocentric disturbance of the perception of motion. I will not discuss this topic here.

3. THE HEADCENTRIC FRAME

A misjudgment of the headcentric direction or motion of a visual object could arise from a

misregistration of the position or motion of either the retina/image or the eyes. In this section I

shall consider only phenomena due to misregistration of the position or movement of the eyes.

3.1 Illusory Shifts of Headcentric Visual Direction

Deviations of the apparent straight ahead due to misregistered eye position are easy to

demonstrate. If the eyes are held in an eccentric position, a visual target must be displaced

several degrees in the direction of the eccentric gaze to be perceived as straight ahead. When the

observer attempts to look straight ahead after holding the eyes off to one side, the gaze is dis-

placed several degrees in the direction of the previous eye deviation. Attempts to point to visual

targets with unseen hand are displaced in the opposite direction. The magnitude of these devia-

tions has been shown to depend on the duration of eye deviation and to be a linear function of the

eccentricity of gaze (Hill, 1972; Morgan, 1978; Paap and Ebenholtz, 1976). Similar deviations of

bodycentric visual direction occur during and after holding the head in an eccentric posture

(Howard and Anstis, 1974). It has never been settled whether these effects are due to changes in

afference or to changes in efference associated with holding the eyes in a given posture (see

Howard, 1982, for a discussion of this issue). Whatever the cause of these effects, it is evident

that the headcentric system is more labile than the oculocentfic system. This is what one would

expect, because headcentric tasks require the neura/integration of information from more than

one sense organ.

3.2 The Oculogyral Illusion

The oculogyral illusion may be defined as the apparent movement of a visual object while

the semicircular canals of the vestibular system are being stimulated (Graybiel and Hupp, 1946).

The best visual object is a small point of light in otherwise dark surroundings and f'Lxed with

respect to the head. When the vestibular organs are stimulated, as for instance by accelerating the

body about the mid-body axis, the point of light appears to race in the direction of body rotation.

The oculogyral illusion also occurs when the body is stationary, but the vestibular organs signal

that it is tuming. This happens, for instance, in the 20 or 30 seconds after the body has been
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broughtto restafterbeingrotated.It is not surprisingthatapoint of light attachedto thebody
shouldappearto movein spacewhentheobserverfeelsthatthebodyisrotating.I shallrefer to
this perceivedmotionof the light with thebodyastheexocentriccomponentof theoculogyral
illusion. Theexocentriccomponentis notvery interestingbecauseit isdifficult to seehow a
rotatingpersoncoulddo otherthanperceivealight which is attachedto thebody asmovingin
space.But evencasualobservationof theoculogyralillusion revealsthatthe light appearsto
movewith respectto theheadin thedirectionof bodyacceleration.Thisheadcentricmotionof
the light is theheadcentriccomponentof theoculogyralillusion.

Whiteside,GraybielandNiven (1965)proposedthattheheadcentriccomponentof theocu-
logyral illusion is dueto theeffectsof unregisteredefferenceassociatedwith thevestibulo-ocular
response(VOR) Theideais thatwhenthesubjectfixatesthepointof light, VOR engenderedby
bodyaccelerationis inhibitedby voluntaryinnervation.Thevoluntary innervationis fully regis-
teredby theperceptualsystem,but theVOR efferenceis not,andthis asymmetryin registered
efferencecausesthesubjectto perceivetheeyesasmovingin thedirectionof bodyrotation.This
misperceptionof themovementof theeyesis interpretedby thesubjectasaheadcentricmove-
mentof thefixated light.To supportthis theory,weneedevidencethattheefferenceassociated
with VOR is not fully registeredby theperceptualsystemresponsiblefor makingjudgments
abouttheheadcentricmovementof visualobjects.

For frequenciesof sinusoidalheadrotationup to about0.5Hz, theVOR is almosttotally
inhibitedif theattentionis directedto a visualobjectfixed with respectto thehead(Benson
andBarnes,1978).Themostobvioustheoryis thatVOR suppressionby astationaryobjectis
dueto cancellationof theVOR by anequalandoppositesmoothpursuitgeneratedby the
retinal slip signalarisingfrom thestationarylight.Thiscannotbe thewholestorybecause
Barr, SchulthiesandRobinson(1976)reportedthatthegainof VOR producedby sinusoidal
bodyrotationsdecreasedto about0.4whensubjectsimaginedthattheywerelooking at an
objectrotatingwith them.It looksasthoughVOR efferencecanbeat leastpartially cancelled
or switchedoff evenwithouttheaidof visualerrorsignals(McKinley andPeterson,1985;
Melvill Jones,BerthozandSegal,1984).TomlinsonandRobinson(1981)wereconcernedto
accountfor how animaginaryobjectcaninhibit VOR, but for ourpresentpurposes,themore
importantpoint is that VOR is not totally inhibited.Perhapsanimaginedobjectis nota
satisfactorystimulusfor revealingtheextentof voluntarycontroloverVOR. We wondered
whetheranafterimage might be a better stimulus because it relieves subjects of the task of

imagining an object and only requires them to imagine that it is stationary with respect to the

head. We had already found optokinetic nystagmus (OKN) to be totally inhibited by an

afterimage, even though it was not inhibited by an imaginary object. The results of all these

experiments are reported in Howard, Giaschi and Murasugi (1988).

Subjects in total darkness were subjected to a rotary acceleration of the whole body of
14"/s 2 to a terminal velocity of 70°/s, which was maintained for 60 s. In one condition sub-

jects were asked to carry out mental arithmetic. In a second condition they were asked to

imagine an object rotating with the body, and in a third condition, an afterimage was

impressed on both eyes just before the trial began and the subject was asked to imagine that it

was moving with the body. The same set of conditions was repeated, but with lights on, so

that the stationary OKN display filled the visual field. Under these conditions both VOR and
OKN are evoked at the same time.
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In all conditions the velocity of the slow phase of each nystagmic beat was plotted as a

function of time from the instant that the body reached its steady-state velocity. For none of

the subjects was VOR totally inhibited at any time during any of the trial periods. For the

OKN plus VOR condition, subjects could initially inhibit the nystagmus only partially, even
though they could see a moving display, but they could totally inhibit the response after about

30 s, when the VOR signal had subsided.

We propose that VOR is not completely inhibited by an afterimage seen in the dark because

the mechanism used to assess the headcentric motion of visual objects does not have full access

to efference associated with VOR. Thus the system has no way of knowing when the eyes are

stationary. The component of the VOR which cannot be inhibited by attending to an afterimage

gives an estimate of the extent to which VOR efference is unregistered by the system responsible

for generating voluntary eye movements and for giving rise to the headcentric component of the

oculogyral illusion.

4. THE EXOCENTRIC FRAME

4.1 Vection

Vection is an illusion of self-motion induced by looking at a large moving display and is

the clearest example of an exocentric illusion. For instance, illusory self-rotation, or circular-

vection, is induced when an upright subject observes the inside of a large vertical cylinder

rotating about the mid-body axis (yaw axis). For much of the time the cylinder seems to be

stationary in exocentric space and the body feels as if it is moving in a direction opposite to that

of the visual display. Similar illusions of self-motion may be induced by visual displays rotating
about the visual axis (roll axis) or about an axis passing through the two ears (pitch axis)

(Dichgans and Brandt, 1978). Rotation of a natural scene with respect to the head is normally due

to head rotation, and the vestibular system is an unreliable indicator of self-rotation except during

and just after acceleration. Therefore it is not surprising that scene rotation is interpreted as self-

rotation, even when the body is not rotating. There is a conjunction of visual and vestibular

inputs into the vestibular nuclei (Waespe and Henn, 1978) and the parietal cortex (Fredrickson

and Schwarz, 1977), which probably explains why visual inputs can so closely mimic the effects

of vestibular inputs.

4.1.1 Vectionfor different postures and axes of rotation- If the vection axis is vertical, the
sensation of self-rotation is continuous and is usually at the full velocity of the stimulus motion.

If the vection axis is horizontal, the illusory motion of the body is restrained by the absence of

utricular inputs that would arise if the body were actually rotating. Under these circumstances a

weakened but still continuous sensation of body rotation is accompanied by a paradoxical sensa-

tion that the body has tilted only through a certain angle (Held, Dichgans and Bauer, 1975).

Howard, Cheung and Landolt (1987) suspended a subject in various postures within a large

sphere that could be rotated about a vertical or horizontal axis and measured the magnitude of

vection and illusory body tilt for yaw, pitch and roll vection for both vertical and horizontal

orientations of each axis (fig. 1).

For body rotation about both vertical and horizontal axes, yaw vection was stronger than

pitch vection, which was stronger than roll vection. When the vection axis was vertical,
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sensationsof body motion were continuous and usually at, or close to, the full velocity of the

rotating visual field. When the vection axis was horizontal, the sensations of body motion were

still continuous, but were reduced in magnitude. Also, for vection about horizontal axes, sensa-

tions of continuous body motion were accompanied by sensations of illusory yaw, roll, or pitch

of the body away from the vertical posture. The mean body tilt was over 20*, but the body was

often reported to have tilted by as much as 90". Two subjects in a second experiment reported

sensations of having rotated full circle. Held, Dichgans and Bauer (1975) reported a mean

illusory body tilt of 14". We obtained larger degrees of body flit, probably because our display

filled the entire visual field and because subjects were primed to expect that their bodies might
really flit. In most subjects, illusory backwards flit produced by pitch vection about a horizontal

axis was much stronger than illusory forward flit. Only two of our 16 subjects showed the

opposite asymmetry; that was also reported by Young, Oman and Dichgans (1975).

4.1.2 Vection and the relative distances of competing displays - The more distant parts of a

natural scene are less likely to rotate with a person than are nearer parts of a scene, so that the
headcentric motion of more distant parts provides a more reliable indicator of self-rotation than

does motion of nearer objects. It follows that circularvection should be related to the motion of

the more distant of two superimposed displays. In line with this expectation Brandt, Wist, and

Dichgans (1975) found that vection was not affected by a stationary object in front of the moving

display, but was reduced when the object was seen beyond the display. Depth was created by
binocular disparity in this experiment, and there is some doubt whether depth was the crucial

factor as opposed to the perceived foreground-background relationships of the competing stimuli.

Furthermore, the two elements of the display differed in size as well as distance.

Ohmi, Howard and Landolt (1987) conducted an experiment using a background cylin-

drical display of randomly placed dots which rotated around the subject, and a similar stationary
display mounted on a transparent cylinder which could be set at various distances between the

subject and the moving display. The absence of binocular cues to depth allowed the perceived

depth order of the two displays to reverse spontaneously, even when they were well separated in

depth. Subjects were asked to focus alternately on the near display and the far display while

reporting the onset or offset of vection. They were also asked to report any apparent reversal of

the depth order of the two displays, which was easy to notice because of a slight difference in
appearance of the two displays.

In all cases vection was experienced whenever the display that was perceived as the more

distant was moving and was never experienced whenever the display perceived as more distant

was stationary. Thus circular vection is totally under the control of whichever of two similar dis-

plays is perceived as background. This dominance of the background display does not depend on
depth cues, because circularvection is dominated by a display that appears more distant, even

when it is nearer. We think that perceived distance is not the crucial property of that part of the

scene interpreted as background. When subjects focused on the moving display, optokinetic

pursuit movements of the eyes occurred, and when they focused on the stationary display, the
eyes were stationary. But such a change in the plane of focus had no effect on whether or not

vection was experienced, as long as the apparent depth order of the two displays did not change.

Thus sensations of self rotation are induced by those motion signals that are most reliably

associated with actual body rotation--namely, signals arising from that part of the scene per-

ceived as background. Vection sensations are not tied to depth cues, which makes sense because

depth cues can be ambiguous. Nor are vection sensations tied to whether the eyes pursue one
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partof the sceneor another,whichalsomakessensebecauseit is headcentricvisualmotion that
indicatesself-motion,which is just aswell detectedby retinal imagemotion asby motion of the
eyes.

4.1.3Circularvection and the central-peripheral and near-far placement of stimuli - It has

been reported that circularvection is much more effectively induced by a moving scene confined

to the peripheral retina than by one confined to the central retina (Brandt, Dichgans and Koenig,

1973). In these studies, the central retina was occluded by a dark disc which may have predis-

posed subjects to see the peripheral display as background, and it may have been this, rather than

its peripheral position, which caused it to induce strong vection. Similarly, when the stimulus
was confined to the central retina, subjects may have been predisposed to see it as a figure

against a ground, which may have accounted for the small amount of vection evoked by it.

Howard et al. (1987) conducted an experiment to test this idea. The apparatus is depicted in

figure 2. The subject sat at the center of a vertical cylinder covered with randomly arranged black

opaque dots. A 28* square display of dots above the subjecfs head was reflected by a sheet of

transparent plastic onto a matching black occluder in the center of the large display. The central

display could be moved so that it appeared to be suspended in front of, in the same plane as, or

beyond the peripheral display. In the latter position it appeared as if seen through a square hole.
In some conditions, one of the displays moved from right to left or from left to right at 25 °/s
while the other was occluded. In other conditions both displays were visible, but only one moved

and in still other conditions, both displays moved, either in the same direction or in opposite

directions. In each condition subjects looked at the center of the display and rated the direction

and strength of circularvection.

The results are shown in figure 3. They reveal that, all things being equal, vection is driven

better by peripheral stimuli than by a 28 ° central stimulus Indeed, it is driven just as well by a

moving peripheral display with the center black or visible and stationary as it is by a full-field

display. However, if the center of the display is moving in a direction opposite to that of the

peripheral part, then vection is reduced. Thus a moving central display can weaken the effect of a

moving peripheral display, but not to the extent of reversing vection. If the peripheral part of the

display is visible but stationary, then the direction of vection is determined by the central part of

the display, but only if the moving central field is farther away than the surround. This result is
understandable when we realize that this sort of stimulation is produced, for example, when an

observer looks out of the window of a moving vehicle. The moving field seen through the

window indicates that the viewer is carried along with the part of the scene surrounding the
window on the inside. When the surround is black, vection is still controlled by the movement of

the central display, even when it is coplanar with or in front of the surround. The reason for this

is probably that a central display in front of a black surround provided virtually no cues to its

location in depth and subjects perceived it as being beyond the surrounding black display.

4.2 Induced Visual Motion

Induced visual motion occurs when one observes a small stationary object against a larger

moving background and was f'u'st described in detail by Duncker (1929). For instance, the moon

appears to move when seen through moving clouds. There is a form of induced motion in which

the stationary object is seen against a frame which moves across it. In this stimulus configura-

tion, the moving frame becomes increasingly eccentric and this may be responsible for some of
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the illusory motion of the stationary object. I do not wish to consider the asymmetry effect, so the
stimulus I shall consider is one in which the stationary object is seen against a large moving

background that either fills the visual field or remains within the confines of a stationary

boundary.

Induced visual motion could occur within the oculocentric, the headcentric or the exocen-

tric system. As an oculocentric effect, it could be due to contrast between oculocentric motion

detectors. I shall argue that this is not a major cause of the illusion.

As a headcentric effect, induced visual motion could be due to OKN induced by inhibition

of the moving background by voluntary fixation on the stationary object. If the efference associ-
ated with OKN were not available to the perceptual system, but the efference associated with

voluntary fixation were, this should create an illusion of movement in a direction opposite to that

of the background motion. This explanation, which I proposed in 1982, is analogous to that

proposed by Whiteside, Graybiel and Niven (1965) to account for the oculogyral illusion. It has

been championed more recently by Post and Leibowitz (1985) and Post (1986). I believe that the
evidence reviewed below shows that this is not the main cause of induced visual motion.

Induced visual motion could be an exocentric illusion. It has been explained that inspection

of a large moving background induces an illusion of self-motion accompanied by an impression
that the background is not moving. A small object fixed with respect to the observer should

appear to move with the observer and therefore to move with respect to the exocentric frame

provided by the perceptually stationary background. This possibility was mentioned by Duncker

and is, I suggest, the major cause of induced visual motion. I shall now review evidence in favour

of this explanation of induced visual motion.

4.2.1 Inhibition of OKN is neither necessary nor sufficient for induced motion - In the

experiment on circularvection described in section 4.1.2, Ohmi, Howard, and Landolt (1987)

showed that vection occurred whenever the more distant of two displays was moving, but never

when the more distant display was stationary. When the more distant display moved, vection

occurred both when the subjects converged on the moving display and had OKN, and when they

converged on the stationary nearer display and inhibited OKN. The important point in the present

context is that the nearer stationary display appeared to move with the subject (exocentrically)

whenever there was vection, but appeared perfectly stationary when there was no vection. Thus,

induced visual motion came and went with vection and did not depend on whether or not OKN

was inhibited. McConkie and Farber (1979) reported that a visual display perceived as back-

ground induced visual motion in an otherwise similar display perceived as foreground, although

they did not relate this to changes in vection.

The theory that ascribes induced visual motion to contrast between oculocentric motion

detectors cannot account for these results, because the same relative motion was present when

the far display moved and the near display did not, as when the near display moved and the far

one did not. According to the oculocentric theory there should have been induced motion in both

cases rather than only in the fast.

The headcentric theory of induced visual motion that explains the effect in terms of

inhibition of involuntary OKN by voluntary efference cannot account for these results either,
because induced motion occurred whether or not OKN was inhibited. Furthermore, when a

stationary display was seen as the background to a moving display, vection did not occur, even
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whensubjectsattendedto thestationarydisplayandinhibitedOKN. Thus,whetheror notOKN
wasinhibitedhadnobeatingon whetherinducedvisualmotionoccurredunderthese
circumstances.

Vectionis anexocentricphenomenon,andinducedvisualmotionof stationaryelementsof
thevisualdisplaycomesandgoeswith saturatedvection.Thestationaryelementssimply look as
if theyarerotatingwith thebody,not slowerandnot faster.If vectionis fully saturated,themov-
ing sceneappearsstationaryandthebodyandstationaryelementsof thesceneappearto move
exocentricallyatthefull velocityof theinducingfield. Underthesecircumstancesinducedvisual
motionis complete.Forinstance,if a largescenerotatesat 60*/s, inducedvisualmotionof asta-
tionaryobjectis alsothatvelocity.All thissuggeststhatinducedvisualmotion canbeanexocen-
wic effect coupled to vection. Headcentric induced motion may occur in other conditions.

The exocentric theory of induced visual motion nicely explains why there is no loss of

accuracy in pointing with unseen hand to a visual target subjected to induced visual motion

(Bacon, Gordon and Schulman, 1982; Bridgeman, Kirsch and Sperling, 1981). A headcentric

theory of induced motion predicts that pointing would deviate, since any misperception of gaze

should be reflected in the bodycentric task of pointing. On the exocentric theory, there should be

no loss in pointing accuracy, since pointing is a bodycentric task.

It might be objected that when a single stationary object is placed against a small moving

display it exhibits induced motion, although there is no discemable illusion of self-motion. I

think this is because the visual consequences of vestibular stimulation have a lower threshold

than the sensations of body motion. For instance, it is well known that the oculogyral illusion

induced by actual body rotation gives a more sensitive measure of vestibular thresholds than do

sensations of body motion (Miller and Graybiel, 1975). When the inducing field is small,

induced visual motion is only a fraction of the velocity of the inducing field, but as the size of the

inducing field is increased, vection becomes evident and induced visual motion more pronounced
until, when the field is sufficiently large, both vection and induced visual motion attain the full

value of the velocity of the moving field. When vection and induced visual motion are saturated,

the objectively stationary object appears to move in exocentric space at the same velocity as the

body, neither getting ahead nor lagging behind. In other words, with large inducing fields there is

no perceptible headcentric component of induced visual motion. The stationary object may
appear to be headcentrically displaced in the direction of motion of the background, but that is a

displacement effect, not an illusory motion. This effect may be related to the well-known fact
that, in the absence of a fixation point, the eyes deviate in the direction of the fast phases of OKN

(Brecher, et al., 1972; Heckmann and Post, 1986). It is possible that when a visual display is

accelerating, the increasing deviation of gaze induces an apparent motion in a stationary object.

However, I am dealing here only with illusory visual motion induced by visual displays moving

at constant velocity.

4.2.2 Evidence that OKN efference is perceptually registered- The fact that a headcentric

component of induced visual motion may be absent suggests that efference associated with OKN
is available to the perceptual system, unlike that associated with VOR. We recently produced

evidence that this is so (Howard, Giaschi and Murasugi, 1988).

Optokinetic nystagmus is induced when a person looks at a moving textured surface.

The response cannot be inhibited by voluntary effort, as long as the eyes remain converged on

the moving display (Howard and Gonzalez, 1987). However, the response is totally inhibited
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if attentionis directedto a stationaryobjectsuperimposedon thecenterof thedisplay
(Murasugi,Howard,andOhmi, 1986).If theattentionis directedto anafterimageimposedon
thefovea,OKN maybe totally inhibited(Viefhues,1958;Murasugi,HowardandOhmi,
1984:Wyatt andPola,1984).If theafterimageis regardedasfixed in space,thenOKN is
inhibited andtheafterimageappearsstationary.If theafterimageis regardedasmovingwith
themovingdisplay,thenOKN is fully restored.It iseasyto understandhow areal stationary
object allowsapersonto inhibit OKN; anymovementof theeyeswith respectto thesta-
tionaryobjectgeneratesbothamisfoveation(position)signalandaretinalslip (velocity)
signal.However,theseerror signalsarenotprovidedby anafterimage,sothat someother
error signalor anopen-loopsignalmustbeusedin thiscase.Theeffectcannotbedueto
occlusionof themovingdisplayby theafterimagebecauseOKN wasonly partially reduced
whenthecenterof thedisplaywasoccludedby ablackhorizontalband.ThemoreOKN is
inhibited, themoretheeyeslag behindthemovingdisplayandthegreateris therelative
motion betweenafterimageanddisplay.However,althoughrelativemotionis minimum when
OKN gainis one,it hasnomaximumvaluebecauseit wouldcontinueto increaseif theeyes
wereto movein adirectionoppositeto thatof thedisplay.In otherwords,thedegreeof
relativemotionbetweenafterimageandmovingdisplaydoesnot indicatewhentheeye
velocity is zero.A partial lossof gainof OKN foundin somesubjectswhenimagininga
head-fixedobjectispresumablydueto theinjectionof avoluntarycommandinto theeye
movementsignal.But thiseffectaccountsfor only a smallpartof thecompletesuppressionof
OKN by anafterimage.

Theinhibition of OKN byanafterimagecouldbedue to the production of a voluntary

efferent command of opposite sign which cancels the OKN efference signal. If the voluntary

mechanism had only partial access to the efference controlling OKN, then it would not be able to

produce a matching command and bring the eyes to a stop and at the same time perceive the
afterimage as stationary with respect to the head. An object imagined in the plane of the display

is ineffective, and this must be because it provides no confirming impression of a stationary

object once OKN efference has been cancelled. In the absence of such an object, there is an

overriding necessity to stabilize the image of the moving stimulus.

4.2.3 Induced visual motion in several directions simultaneously - Visual motion has been

reported to be induced by stimuli moving simultaneously in two directions. For instance,

Nakayama and Tyler (1978) reported that a pair of parallel lines pulsing in and out in opposite

directions induced an apparent pulsation of a pair of stationary lines placed between them. How-

ever, the apparent velocity of this induced motion was only about 0.1"/s and the effect may have

been an oculocentric effect akin to the figural aftereffects. But in any case, the exocentric theory
of induced visual motion can account for induced visual motion in more than one direction. For

instance, an outwardly expanding textured surface induces forward linear vection (Anderson and
Braunstein, 1985). Ohmi and Howard (1988) found that forward linear vection induced by a

looming display, and the accompanying induced visual motion of a superimposed stationary

display occurred only if the looming display appeared more distant than the stationary display.

According to the oculocentric theory of induced visual motion, the depth order of the two

displays should not matter. A theory of induced visual motion based on the inhibition OKN

cannot account for induced visual motion produced by looming displays, since such displays do
not invoke OKN.

It is possible that there is a headcentric component to induced visual motion under certain
circumstances, such as when a visual display is accelerating or becoming more eccentric. But the
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above evidence strongly suggests that the major part of induced visual motion induced by large

moving fields under steady conditions is exocentric and is a simple consequence of vection.

Visual motion induced under these circumstances can be 100% of the velocity of the inducing

field. Furthermore, visual motion may be induced in a stationary display that fills the visual field

if the display is perceived as a foreground in front of a large moving background.
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TABLE 1.- FRAMES OF REFERENCE FOR VISUAL SPATIAL JUDGMENTS. RF IS

SHORT FOR REFERENCE FRAME AND O IS SHORT FOR STIMULUS OBJECT

TYPI- SENSORY COMt_ONENTS I;XAMt_[.I-S

EGO('I';NTRI("
O and RF internal

PROPR IOCEVFIVE

EGOCENTRIC

O external, RF internal

OCULOCENTRIC

HEADCENTRIC

BODYCENTRIC

(Body not in view)

BODYCENTRIC

(Body in view)

EXOCENTRIC

O internal, RF external

EXOCENTRIC
O and RF external

SINGLE POINT OR LINE

VISUAL OBJECTS

MULTISENSORY

INTERSENSORY

HETEROCENTRIC
RF internal-external

GEOGRAPHICAL

GRAVITATIONAL

Sense of position of body parts

Retinal local sign (plus stereo vision)

Eye position + local sign

Neck + eye position + local sign

Relative local sign

Sensed body part and external reference

No exocentric judgments possible

Relative local sign

One object detected by two senses

Visual and non-visual objects compared

Object-to-self plus landmark

Object-to-self plus gravity

Point to the toe

Fixate an object, Place a line on a retin',tl meridian

Place an object in the median plane of the head

Align a stick to the unseen toe. Place object to left of body

Align a stick to the seen toe

Align the arm with gravity. Point North

Place object A East of object B. Align three objects

Associate the sight and sound of object

Set a line vertical. Point a line to an unseen sound

Judge that an object is East of thc self

Judge that an object is above the head
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Figure 1.-The set of postures and vection axes use by Howard, Cheung and Landolt (1987) to

study vection and illusory body flit. The subject is seen through the open door of the 3m

diameter sphere which could be rotated about either the vertical or horizontal axis. The subject

was supported in different postures by air cushions and straps (not shown) so as to produce

the six possible combinations of vection axis (yaw, pitch and roll) and gravitational orientation
of the axis.
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Surround display
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Figure 2.- A diagrammatic representation of the displays use by Howard, Simpson and Landolt

(1987) to study the interaction between central-peripheral and far-near placement of two

displays in generating circularvection. The two displays could be moved in the same or in

opposite directions, or one of them could be stationary or blacked out.

1.0 -

• Near

I_J Coplanar

Far

-0.2

Same Opposite Centre Centre Surround Surround
Motion Motion Still Black Still Black

Figure 3.- Mean vection ratings of nine subjects plotted as a function of the relative depth between
the central and peripheral parts of the display and the type of display. A vection rating of 1.0

signifies full vection in a direction opposite to the motion of the display. When the two parts of

the display moved in opposite directions, the motion of the peripheral part was taken a
reference. The error bars are standard errors of the mean.
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COMMENTS ON TALK BY IAN HOWARD

Thomas Heckmann

Human Performance Laboratory

Institute for Space and Terrestrial Science

York University, North York, Ontario, Canada M3J 1P3

Robert B. Post

Department of Psychology

University of California, Davis, CA 95616

Induced visual motion is the name assigned a group of phenomena which can be described

with more or less the same words: "illusory motion of stationary contours opposite the direction of

moving ones." As Dr. Howard has pointed out, it is possible that oculocentric, headcentric and
exocentric mechanisms generate experiences which may be described by the words "induced

visual motion." We have found Dr. Howard's framework very helpful in organizing our thoughts

about the multiple sources of these apparently similar phenomena. We also accept that some forms

of induced visual motion may depend on vection and cannot be explained by suppression of

nystagmus (e.g., phenomenal tilt of a stationary stimulus during roll vection induced by a con-

toured disc rotating in a frontal plane). We are less certain than Dr. Howard, however, that there

is only one mechanism for induced visual motion.

In Dr. Howard's study, phenomenal motion of a stationary display which was positioned

in front of a moving display occurred only when there was vection. We have reliably obtained

induced visual motion of small fixation targets in the complete absence of vection (Post and

Heckmann, 1987; Post and Chaderjian, 1988; Heckmann and Post, 1988). Dr. Howard would

likely explain this finding with his statement that "...visual consequences of vestibular stimulation

have a lower threshold than sensations of bodily motion." We agree wholeheartedly: optokinetic

aftemystagmus (OKAN), which is a good indicator of the vestibular effects of visual stimulation,
has been found at moving-contour velocities too low to elicit vection (Koenig, Dichgans and

Schmucker, 1982). We have also reliably obtained OKAN after exposure to a moving-contour

stimulus which elicits no vection (Heckmann and Post, 1988). In fact, induced visual motion may

be elicited by a single moving dot stimulus (Post and Chaderjian, 1988) which is not capable of

producing vection.

If induced visual motion occurs because a perceptually registered voluntary signal for fixa-

tion opposes an unregistered involuntary signal for optokinetic nystagmus, then the illusion should

reflect known dynamic properties of the optokinetic system. That is, the magnitude of induced

visual motion will be proportional to the nystagmus signal being opposed. Induced visual motion
should therefore vary across stimulation in the same way that nystagmus varies, but have the

opposite directional sign. Our efforts to disconf'urn this prediction have so far failed. Induced
visual motion is correlated with OKAN of opposite directional sign across variations in stimulus

illuminance and velocity (Post, 1986). The magnitude of induced visual motion increases along

with the slow-phase velocity of OKAN with increasing stimulus duration. The illusion also decays

and reverses direction along with OKAN after stimulus termination. Further, both responses show

an increased tendency to reverse direction following stimulation in the presence of a fixation target

rather than after stimulation without fixation (Heckmann and Post, 1988).
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Induced visual motion is not the only motion illusion involving visual fixation of moving or

stationary targets which can potentially be explained by interaction of voluntary and involuntary

eye-movement signals. These illusions include autokinesis, the Aubert-Fleisehel effect, the
Filehne Illusion, and several others (Post and Leibowitz, 1985). Induced visual motion, however,

provides a particularly good model for testing the eye-movement hypothesis, since a good deal is

known about the dynamics of visually induced involuntary eye movements. We have not been so

much interested in "championing" a particular explanation of induced visual motion, therefore, as

we have been to test the existence and applicability of a particular mechanism. Of course, since we

are using a well-known illusion as our model, we must also explore the applicability of alternative

explanations of induced visual motion to our results.

With further reference to the origin of induced visual motion in vection, therefore, we

recently reported a dissociation between the two illusions (Post and Heckmann, 1987). Briefly,

fixation of a target located 10 ° left of the midline during exposure to rightward-moving background

contours reliably increased the magnitude of induced visual motion. This finding is consistent with

the idea that extra voluntary efference is needed to maintain a leftward as compared to a straight-
ahead gaze during rightward motion of background contours. Vection, however, was reduced

when a fixation target was made available, and further reduced when the target was placed 10 ° left

of the midline. We emphasize that this dissociation does not reject the idea that some form of

induced visual motion originates with veetion, only the idea that all of induced visual motion origi-
nates with vection.
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ABSTRACT

Systematic errors in perception and memory present a challenge to theories of perception and

memory and to applied psychologists interested in overcoming them as well. The present paper

reviews a number of systematic errors in memory for maps and graphs, and accounts for them by

an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs.

Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual

stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-

driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segrega-

tion of figure from ground is an early process, and figure recognition later, for both, symmetry is a

rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one
another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors

(e.g., significance) seem likely to affect selection of a reference frame.

Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in

maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing
figures, distorts map and graph figures alike. Top-down processes also seem to operate in that

calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory

errors in the direction of the description. Conceptual frame of reference effects were demonstrated

in memory for lines embedded in graphs. In earlier work, the orientation of map figures was dis-

torted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines,

were remembered as closer to an imaginary 45" line than they had been. Reference frames are

determined by both perceptual and conceptual factors, leading to selection of the canonical axes as

a reference frame in maps, but selection of the imaginary 45 ° line as a reference frame in graphs.

DISTORTIONS

With the best of intentions, scientists, newspaper editors, and textbook authors select graphic

displays to present their ideas more clearly and more vividly to their readers. Nevertheless, some

of the effects are not only unintended, but unwanted. For example, in figure 1, presumably the

striping on the bars was selected to differentiate the bars, not to instantiate the herringbone illusion,

where straight lines are perceived as tilted (this example comes from Schultz, 1961 through
Kruskal, 1982). In figure 2 (from the business section of the August 2, 1987, New York Times),
the graphic artist wanted to contrast two related sets of numbers, the debt and the debt service ratio,

year by year. I don't think that the graphic artist intended to create a figure with such a strong ten-

dency to reverse that it makes it difficult to focus on any one section of the graph. Figure 3 takes

us from the realm of perceptual illusions to experiments in judgment by Cleveland, Diaconis, and

McGill (1982). These statisticians asked knowledgeable subjects to estimate correlations from
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scatterplotsandfoundthathigherestimatesweregivenwhenthepoint cloudwassmaller(or the
framelarger). Figure4,popularizedbyTufte (1983)andreprintedbyWainer(1980),is taken
from theWashington Post of October 25, 1978. Here, the graphic artist probably thought it would

be clever to represent the metaphor of the diminishing dollar quite literally. However, only the

length of the dollar represents the decline of purchasing power, not the area, yet it is the area that is

picked up by the human observer. So, although the Carter dollar purchases a bit less than half of
the Eisenhower dollar, the Carter dollar looks less than a quarter of the area of the Eisenhower
dollar.

The next example of distorted perception brings me to research in my laboratory. Let me first

tell you about a number of different phenomena we have studied, and then I will try to account for

them in an analysis of perceptual organization, where both perceptual and conceptual factors are

operative. First, I will discuss examples of perceptual factors. Jennifer Freyd and I (1984) asked

subjects to look at figures like that at the top of figure 5, and then decide whether it was more sim-

ilar to a slightly more symmetric figure or to an equally different, but slightly less symmetric, fig-

ure. When we selected nearly symmetric figures like that one, subjects nearly always chose the

more symmetric alternative as the more similar. What's more, when subjects were asked to select

which of the bottom figures was identical to the top figure, subjects were faster to select the identi-

cal figure when the alternative figure was less symmetric than the original (as in fig. 5) than when
it was more symmetric than the original. These effects obtained for nearly symmetric figures, but

not less symmetric ones. That was rather complicated, but these experiments, and others like them

(see Riley, 1962, and Freyd and Tversky, 1984, for reviews) suggest that there is a symmetry bias
in perception. Not only do viewers rapidly detect symmetry, but they also perceive nearly

symmetric figures as more symmetric than they are. That is, small deviations from symmetry are

overlooked. Human faces, for example, are rarely perfectly symmetric, though we think of them

as such. The outer men in figure 6 (taken from Neville, 1977, p. 335), for example, are actually

the same man at the same time. The two outer pictures were constructed by taking the right and left
halves of the actual face in the center, and reproducing them in minor image. It is only by seeing

how different the two constructed symmetric faces are that we become aware of the asymmetry of

the original face.

Diane Schiano and I (1987 manuscript, "Distortions memory for graphs and maps") looked for

and found distortions toward symmetry in memory for maps and graphs. We presented maps or

graphs like those in figure 7 to different groups of subjects. Sometimes, the subjects were asked
to sketch the curves of the graphs or the rivers of the maps, and other times, they were asked

questions about the content of the maps or graphs. This was done to induce a natural comprehen-

sion attitude toward the figures, and to prevent subjects from simply memorizing line shapes. We

then asked judges who knew nothing about the hypotheses to rate whether the drawn curves and
rivers were more or less symmetric than the original ones. The remembered curves, whether in

maps or graphs, were judged more symmetric than the originals. These errors in the direction of

symmetry, however, apparently occur in perception, not in memory. We asked another group of

subjects to copy the curves, and the copied curves were also judged to be more symmetric than the

originals, and to the same degree. The first effect to be accounted for, then, is a tendency to per-

ceive nearly symmetric figures as more symmetric than they actually are.

For the next two effects, I turn to maps. In figure 8 are two maps of the world; which one is

correct? If you are like the subjects I have run, most of you will pick the bottom one; that is, the

incorrect one. Let me give you another chance. In figure 9 are two maps of the Americas; my

apologies to Central America, which was excised not because of the political situation, but for
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visual reasons.Again,whichmapis thecorrectone?And again,I will predictthatmostof you
will preferthe left, incorrect,one. Why do theincorrectmapslook better?Basically,becausethe
incorrectonesaremorealigned. In the incorrect map of the world, the U.S. and Europe and South

America and Africa are more aligned than they are in true map. And in the incorrect map of the
Americas, North and South America are more aligned. I found memory errors in the direction of

greater alignment for these maps, for directions between major cities on them, for artificial maps,

and for visual blobs (Tversky, 1981). Others have found similar results (e.g., Byrne, 1979).

The second prevalent error I have found in maps I termed rotation. I asked a group of subjects

to place a cut-out of South America in a frame where the canonical directions, north-south and east-

west, corresponded, as usual, to the vertical and horizontal sides of the frame (fig. 10). Although

the actual orientation is on the right, most of the subjects uprighted South America to the angle of

the left-hand figure, or even more so. Not only South America is perceived as tilted. Those of

you who live in the Bay Area, or who arrived from the San Francisco airport may think that you
drove southwest to Monterey. Most of my local respondents made mistakes like that; for example,

thinking that Berkeley is east of Stanford and Santa Cruz is west of Palo Alto. Not so, as this true

map of the area shows (fig. 11). Just as for alignment, I have found memory errors of rotation

toward the axes for real map figures, for directions between cities on them, for roads, for artificial
maps, and for visual blobs (Tversky, 1981). Unlike the symmetry distortion, the distortions pro-

duced by alignment and rotation are stronger in memory than in perception; that is, small tenden-
cies toward alignment and rotation appeared in a copy task, but much greater errors appeared in a

memory task.

Until now, we have demonstrated that there is a bias toward symmetry in both maps and

graphs that appears in perception and is preserved in memory. I have also demonstrated, primarily
in maps, biases toward alignment with other figures and rotation to a vertical/horizontal frame of

reference that appear slightly in perception and stronger in memory. Now is the time to start to
account for these systematic errors by an analysis of perceptual organization, or more specifically,

by the effects of perceptual factors in perceptual organization (fig. 12). One of the earliest forms of

spatial organization is distinguishing figures from grounds. Because figures are more likely to

have symmetry, closure, and other, similar properties than backgrounds, these are valuable cues to

figureness (e.g., Hochberg, 1978; Koffka, 1935; Kohler, 1929; Wertheimer, 1958). Symmetry,

or near-symmetry, is rapidly and easily detected (e.g., Barlow and Reeves, 1979; Chipman and
Mendelson, 1979; Carmody, Nodine, and Locher, 1977; Corballis, 1976). Thus, because of its

usefulness in figure discrimination, symmetry seems to be rapidly detected and small deviations

from symmetry are overlooked so that nearly symmetric figures are coded and remembered as

more symmetric than they really are. Now for anchoring figures in space. In an empty field, fig-

ures appear to float, a phenomenon well-known to star-gazers, called the autokinetic effect. In
order to perceive and remember the locations of figures, it is useful to anchor them to other figures

and/or to a frame of reference. In fact, given that perceivers and the world are rarely static, this

seems to be the only way to organize the elements of a scene. Although valuable in locating and

orienting figures, anchors pull figures closer to them in memory, yielding systematic errors. Map

bodies and graph curves are figures on backgrounds; they are often nearly symmetric, they appear

sometimes with other figures, and typically appear in a reference frame. Thus, the analysis of
distortion in terms of perceptual organization applies to maps and graphs, and accounts for the

errors of symmetry, alignment, and rotation.

This, briefly, is the perceptual analysis. Now, I'd like to present two cases where, we believe,

conceptual factors enter into the perceptual analysis of maps and graphs and yield further distor-
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tions. This work was also done with Diane Schiano. The f'n'st effect brings us back to symmetry.

The graph curves we asked subjects to study were slightly, but noticeably, less than symmetric.

Given that people perceive such curves as more symmetric than they really are, we wondered if we

could weaken or strengthen that belief or perception by an accompanying description of the curve,
and consequently alter people's memory of the curve. Again, we presented a variety of graphs for

subjects to remember, and tested memory either by asking subjects to draw the graphs or to

describe some aspect of the relation depicted by the graph. This time the graphs also included

descriptions of the functions. For the nearly-symmetric curve of interest, half the subjects received
a description emphasizing its symmetry, that is, "Notice that the curve rises smoothly and falls

smoothly." The other subjects received a description emphasizing its asymmetry, that is, "Notice

that the curve rises sharply and falls slowly." The curves drawn from memory were given to

judges who were unaware of the experimental conditions. The results were just as expected:

when attention was directed to the symmetry of the curves, remembered curves were drawn more

symmetric than when attention was drawn to the asymmetry of the curve. This result is reminis-

cent of one of the truly classic experiments in psychology, that of Carmichael, Hogan and Waiter
(1932).

The second conceptual factor is more subtle, and addresses the issue of what determines the

frame of reference. In the absence of any conceptual or meaningful factors, there are often per-

ceptual factors that provide a frame of reference. The typically horizontal and vertical lines of the

actual frame of a picture are one example (e.g., Howard and Templeton, 1971). For an environ-

ment, the natural vertical plane, up-down, and the two natural horizontal planes, left-right and
front-back, form a reference frame; when this is reduced from two to three dimensions, the front-

back dimension drops out (e.g., Clark, 1973), usually leaving the horizontal and vertical axes of

the picture frame as a reference frame. For maps, there is an additional conceptual factor that is
typically perfectly correlated with the perceptually salient axes, namely the canonical directions,

north-south and east-west. Thus far, the evidence for alignment has come either from maps and

environments, where both perceptual and conceptual factors suggest the horizontal and vertical as a

reference frame, or from visual blobs, where perceptual factors suggest the horizontal and vertical.

Schiano and I wondered if simple straight-line functions at various angles in x-y coordinates

would be anchored to those coordinates, and thus distorted toward them. Of course, the x-y coor-

dinates form a natural reference frame for graph functions, but unlike streets, graphed functions are

rarely perfectly horizontal or vertical. Moreover, there is another reference frame for graphed

lines, the (in this case) implicit 45* line. This is the identity line, where x=y, and as such it pro-

vides a very important reference point for graphed lines. Above it are steep rises, and below it are

shallow ones. The experiments we ran were very similar to the previous graph experiments: there

were critical stimuli and distractors, and the memory task was designed to elicit comprehension of
content, not just remembering the line. The exact same stimuli were presented as maps to another

group of subjects. Subjects were told that the angled lines were paths or short-cuts; they weren't
very convincing maps, as can be seen in figure 13. In contrast to the prior work on maps showing

alignment to the closest axis, horizontal or vertical, the graph lines were remembered as closer to

the imaginary 45* line than they actually were. The map lines showed no systematic distortion,

and differed considerably and significantly from the graph lines. We ran this study again, this time

using dotted graph lines rather than filled ones. Again, graph lines were remembered as closer to

the forty-five degree line, and map lines showed no systematic distortion. This is evidence, we

believe, for conceptual factors that influence selection of frame of reference and thereby affect the

perceptual analysis, representation, and memory of visual displays.
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I have presented a perceptual analysis of figure detection and organization. Both these pro-
cesses can lead to systematic distortions, which were demonstrated in perception and memory of

maps and graphs. Conceptual factors were also shown to affect the perceptual analysis and

encoding of visual scenes, and to also yield errors of memory, the description of symmetry in one
case, and the selection of a frame of reference in the other. The bottom line is "What you see

ISN'T what you get."
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Figure 1.-Hypothetical graph taken from Schultz, G. M. (1961). Beware of diagonal lines in bar
graphs. Prof. Geogr., 13, 28-29 (reprinted by Kruskal (1982)).
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Figure 2.- Graph taken from The New York Times, August 2, 1987. (Copyright © 1987 by The

New York Times Company. Reprinted by permission.)
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Figure 6.- Face taken from Neville (1977). The left and right faces were constructed by taking the
left and right halves of the original photograph and reproducing them in mirror image, produc-

ing faces that are symmetric, unlike the original.
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Figure 7.- Map curve used by Tversky and Schiano (1987 manuscript).
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Figure8.-World mapstimuli usedby Tversky(1981). Subjectsincorrectlypreferthelowermap,
in which theU. S.andEurope,andSouthAmericaandAfrica are more aligned.
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Figure9.-Map of theAmericasusedby Tversky(1981). Subjectspreferthe incorrectleft one.
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Figure10.- Thecorrectorientationof SouthAmericaison theright,butsubjectstypically upright
it, asin theexampleon theleft (fromTversky,1981).
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ABSTRACT

Helmet-mounted displays of infrared imagery (forward-looking infrared (FLIR)) allow

helicopter pilots to perform low-level missions at night and in low visibility. However, pilots

experience high visual and cognitive workload during these missions, and their performance capa-

bilities may be reduced. Human factors problems inherent in existing systems stem from three
primary sources: (1) the nature of thermal imagery, (2) the characteristics of specific FLIR sys-

tem _, and (3) the difficulty of using a FLIR system for flying and/or visually acquiring and

tracking objects in the environment. The pilot night vision system (PNVS) in the Apache AH-64

provides a monochrome, 300 by 40 ° helmet-mounted display of infrared imagery. Thermal

imagery is inferior to television imagery in both resolution and contrast ratio. Gray shades repre-

sent temperatures differences rather than brightness variability, and images undergo significant

changes over time. The limited field of view, displacement of the sensor from the pilot's eye
position, and monocular presentation of a bright FLIR image (while the other eye remains dark-

adapted) are all potential sources of disorientation, limitations in depth and distance estimation,

sensations of apparent motion, and difficulties in target and obstacle detection. Insufficient infor-

mation about human perceptual and performance limitations restrains the ability of human factors

specialists to provide significantly improved specifications, training programs, or alternative

designs. Additional research is required to determine the most critical problem areas and to pro-

pose solutions that consider the human as well as the development of technology.

INTRODUCTION

In most civil and military operations, helicopter pilots rely on visual cues to maintain situa-

tional awareness (e.g., estimate the orientation, altitude, speed, and direction of their vehicle; the

location of hazards in the environment; and their geographical location). Maintaining visual contact

with the environment is particularly important (and difficult) in nap-of-the-earth (NOE) flight,
where pilots fly at altitudes between 10 and 30 ft, navigating in and among trees, hills, and build-

ings. During NOE flight, pilots must keep their eyes "out of the cockpit," rather than focused on

displays within the cockpit. There is little margin for error. Existing electronic display systems

do not provide adequately detailed information for visual flightpath control, and guidance algo-

rithms do not yet exist for automatic NOE flight.
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At night and in low visibility, the problem is more severe. Sufficient visual information

about the environment is not available for pilots to navigate safely or identify relevant objects. For

this reason, light-intensifying goggles and helmet-mounted displays of infrared imagery have been

developed. This paper will focus on the unique visual environment created by the latter, as helmet-
mounted displays of infrared imagery (alone or in combination with other sources of visual infor-

mation) are integral to the design of many advanced helicopters.

Forward-looking infrared (FLIR) systems provide pilots with a monochromatic video

image of the outside scene constructed from thermal differences among environmental features.

Computer-generated flight symbology may be superimposed on the helmet-mounted display of

FLIR imagery. Current FLIR pilot night vision systems (PNVS) can be used at night, in total

darkness, or during the day, to allow pilots to "see" through blowing dust, smog, smoke, or con-

cealing foliage.

The FLIR systems used in the Cobra AH-1S and the Apache AH-64 are turret-mounted on

the nose of the helicopter. Their movement is slaved to the position of the pilot's helmet, allowing

the pilot to move the 30 ° (vertical) by 40 ° (horizontal) instantaneous field of view (FOV) through a

"field of regard" of:_)0 ° in azimuth and 65 ° in elevation (from +20 ° to -45 °) (fig. 1). The infrared

sensor consists of an array of 180 detectors which provides 360 lines of resolution. This informa-

tion is transformed into a 875-line video image which is displayed on a 1.92-cm combining lens (a
monocle) mounted on the helmet immediately in front of the pilot's right eye. (fig. 2)

Given the integral role such systems are playing in advanced rotorcraft, it is surprising how

little is known about human factors problems which are related to the use of these complex and

highly demanding systems. The problems may be divided into three categories: (1) the unique
nature of infrared images, (2) specific characteristics of the PNVS, and (3) problems related to the

task of flying a helicopter at low altitudes in low-visibility conditions. This paper will focus on the

most critical problem areas and evaluate their effects on pilot perception and performance.

CHARACTERISTICS OF THERMAL IMAGES

Thermal images are a visible representation of radiation in the infrared band (8-14 _tm in

the PNVS). Thermal radiation is detected by an array of 180 detectors, in current-technology sys-

tems, which can create a visual display with approximately 360 lines of horizontal resolution. The

output of each detector is preamplified, entered into a scan converter, transformed into a video

image, and displayed on a combining lens mounted on the pilot's helmet.

The temperature of an object depends on the properties of its component materials and on

its exposure to natural or artificial sources of heat. Its "thermal signature" depends primarily on its

heat-emitting characteristics. The quality of a thermal image depends on the thermal signatures of
terrain features and objects; the presence of thermal variability in the environment and atmospheric

conditions (e.g., ambient temperatures, moisture, dust, and haze); and the sensitivity and size of

the detectors. Current systems have a limited bandwidth which acts as a low-pass filter, effectively

limiting the detail with which objects can be depicted.

Since FLIR images are transformed into video images and displayed on a cathode ray tube

(CRT), they inherently suffer from all of the shortcomings of video imagery (e.g., limited
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resolution, restricted contrast sensitivity, and dynamic brightness range). In addition, they are
displayed monochromatically and provide a two-dimensional representation of the three-

dimensional world. In comparison to video images, the display provided by the PNVS is also

subject to the specific properties of FLIR technology and the unique characteristics of the thermal

(as compared to the visual) properties of objects in the environment. Figure 3 depicts an example

of a FLIR image with superimposed symbology.

The meaning of "bright" and "dark" in the thermal image is not necessarily equivalent to
light and shade in the optical sense. An object may emit little heat because it is shaded, or for a

variety of other reasons related to the nature of the material and its "thermal history" (Lloyd, 1975).

Thus, in a given image, there may be "shades" which are partly equivalent to real optical shades, or

there may be no shading whatsoever. The human eye has been trained to interpret dark spots as

shaded areas. These are usually perceived as low spots or valleys in the terrain. Thus, pilots may

try (inappropriately) to impose the same perceptual rules on thermal images. Furthermore, the

brightness of a displayed object does not provide accurate range information because objects which
emit high thermal energy may appear to be closer than they really are. Such misinterpretations of

the terrain structure may have severe consequences for helicopter flight at very low altitudes.

The relative temperature of an object changes because of ambient temperature, internal heat

production, and its heat-emitting characteristics. Thus, its infrared signature may change dynami-

cally over time. Further, when the temperature of the "foreground" and "background" are near the

same value (e.g., the "crossover" point) an object may disappear from the visual display. For

example, a truck on a snow-covered field would be quite visible while its engine is running, but

virtually invisible after sitting with its engine off for several hours. There are relatively predictable

periods during each day when the temperatures of specific substances are very nearly equal. For

example, water and vegetation may have two crossover points each day, under some conditions
(fig. 4). When crossover occurs, the ability of a FLIR system to discriminate is severely

degraded. The net result is very poor image quality (Berry et al., 1984).

During the day or soon after sunset, there may be high thermal contrasts, depending on the

terrain and on atmospheric conditions. When this occurs, there are wide temperature gradients,

which generate clear and highly detailed images. Later in the night, thermal contrasts gradually

diminish and images become less detailed. In addition, the effect of solar thermal radiation on the
temperatures of different substances varies and elements of terrain features may cool at different

rates during the night. For example, leaves cool more rapidly than branches. Thus, late at night

trees may look as if they have shed their leaves because their temperature approaches that of the

ambient air temperature. It may be quite confusing for a pilot to pass a grove of fully-leaved trees

on the way to a mission and a grove of apparently dormant trees on the way back.

On the other hand, because of the chemical processes, leaves may emit their own heat.
Thus, when the polarity of the system is set so that dark shades represent cooler objects, leaves are

very bright in contrast to their dark appearance in optical images. These "blonde" trees seem to
merge into the background, making it difficult for pilots to spot them from a distance. Such

dynamic changes require pilots to use complex rules of thumb to interpret visual images, yet accu-

rate evaluations are critical for pilots flying below treetop level.

Urban areas generate and accumulate considerable heat during the day, but, as they cool

during the night, temperatures tend to equalize. This can make it virtually impossible for a pilot to

identify a specific object (such as a high building) which would stand out in an optical image.
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Human-madesourcesof thermalradiation,suchas engines, fires, and friction, provide

small, but significant, sources of infrared radiation. An operating truck, for example, might have a

hot spot near the location of the engine and another near the wheels. Thus, the thermal "signature"

of the truck is quite different from its optical image. Furthermore, if the truck remains stationary,

with its engine off, it may become difficult to discriminate from the surrounding terrain. The

changing visual appearance of human-made objects presents a particularly critical problem for mil-

itary pilots performing target identification and tracking.

Because infrared detectors are sensitive to relative rather than to absolute temperatures, and

because most FLIR sensors scan horizontally (parallel to the horizon), the horizon may blend with

the ground and sky (Bohm, 1985). The absence of a clear horizon line may have a detrimental

effect on spatial orientation and altitude estimation.

Display Polarity

Pilots may elect to assign either light or dark values to "hot" objects in the environment.

Depending on the circumstances, they may alternate between the two polarities, selecting the one

that provides the clearest image. Unlike the difficulties that people encounter in interpreting nega-

tives of optical images, pilots can often improve their ability to recognize objects and interpret ter-

rain features by switching the polarity of the FLIR display. For example, the sky is usually per-
ceived as a bright area in an optical image, and it is always colder than the terrain. Thus, when

the polarity is set to white-cold, the sky will appear to be bright. However, this will coincidentaUy

result in some shaded areas also appearing as bright areas, in contrast to everyday experience.

Thus, under a specific set of circumstances, one polarity might provide the most interpretable

image for targeting or geographical orientation, while the other might be optimal for pilotage.

Gain and Level

The visual display may, at any given moment, present only a sample of the dynamic tem-
perature range. "Gain" and "level" controls allow the pilot to select the desired range of displayed

temperatures. A specific combination of gain and level may or may not be optimal for a particular

task. For example, if gain and level are set to be very sensitive to temperature variations within hot

target areas, an insufficient number of gray shades might be available to provide a detailed image of

the general scene. Some advanced systems offer automatic control over gain and/or level, to pro-

vide an optimal presentation of the average range of temperatures, without requiring the pilot to

make control adjustments. This solution, while intended to reduce pilot workload, may be subop-
timal for detecting a specific object in a given setting.

In summary, thermal images have some unique characteristics that result from the nature of

infrared radiation. Human perceptual skills, which provide efficient tools for interpreting the

"optical world," may be misleading when applied to thermal images. Research is necessary to

(1) determine how the unique characteristics of infrared imagery interact with various a_pects of
human performance, (2) define the skills that are necessary to use FLIR displays of thermal

images, and (3) establish how such skills should be acquired.
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SPECIFIC CHARACTERISTICS OF THE PNVS

In addition to the inherent characteristics of infrared imagery, many of the human factors

problems identified in current systems are related to specific components and design limitations of
the PNVS itself.

Sensor Location

In the Apache, the FLIR sensor is mounted 3.5 m in front and 1.2 m below the pilot's eye

position, creating a displaced eyepoint (fig. 5). Thus, objects within the field of regard of the

sensor may be physically closer to the sensor than they are to the pilots' natural visual reference

(his eyes) (Berry et al., 1984). During training, pilots must learn to adapt to a different visual ref-

erence point and adopt slightly different rules of thumb for estimating range and altitude using the

PNVS display. In addition, objects abeam the sensor (which are no longer visible on the monocle)

might not have passed the pilot's natural visual reference point, creating the possibility of confu-

sion if the object is also visible to the pilots' unaided eye (fig. 6).

Since the sensor is located closer to the ground than are the pilots' eyes, available visual

motion cues indicate slightly higher apparent velocities than pilots would estimate with direct

vision. Again, during training, they must learn new rules of thumb to estimate their speed using

the PNVS display. The displaced eyepoint creates motion parallax problems which are particularly

severe when large viewing azimuths are encountered.

Sensor Movement

In the Apache, the FLIR sensor responds to pilot head movements, moving at a rate of
approximately 150°/sec. However, the slight delay between movement of the helmet and move-

ment of the sensor can contribute to motion parallax problems. Although pilots learn to limit the

frequency and velocity of their head movements to reduce such problems, certain tasks may require

both rapid and frequent changes in the orientation of the sensor to a specific location or object
within the FOV of the sensor.

Helmet-Mounted Display Unit

In the HoneyweU Integrated Helmet and Display Sighting System (IHADSS) used in the

Apache and the Cobra "surrogate trainer" (where some pilots are familiarized with the system),
infrared imagery is displayed as a rectangular area on a combiner lens incorporated into the helmet-

mounted display unit (HDU). The lens is a semitransparent viewing screen that filters light in the

red and blue range and reflects the composite video image presented in the green wavelength. The

back of the lens is chemically coated to reduce glare, transmitting 50% of the light incident upon it.

The lens reflects 80% of the green light rays that exit the HDU toward the pilot's eye. The end

result of the filtering, magnifying, collimating, and reflecting processes is a two-dimensional,

monochromatic, monocular display with a maximum of 125-150 ft-L of brightness (Berry et al.,
1984).
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Field of View

The image presented to the pilot by the PNVS/IHADSS represents a rectangular FOV of
30 ° by 40 °. The pilot views an image which is equivalent to a 7-ft television screen viewed from a

distance of 10 ft (Berry et al., 1984). This relatively narrow FOV eliminates peripheral informa-

tion that is critical for visual flightpath control. In visual flight, pilots depend on peripheral motion

cues to estimate speed and orientation and to develop a sense of object's structure from visual

motion cues. In addition, pilots must maintain their awareness of significant terrain features, the

position and identity of stationary objects, and the projected course of moving vehicles that sur-

round them for navigation, tactical decision-making, and obstacle avoidance. However, the field

of regard of the sensor limits pilots' abilities to maintain visual contact with objects that are located
beside or behind their vehicle.

Surprisingly, little empirical information is available about pilots' FOV requirements for

pilotage, navigation, and target acquisition or their performance capabilities with different FOV.
Furthermore, the FOV requirements for a helmet-mounted PNVS are even less well-known. A

pilot may be faced with the requirement to fly the vehicle while visually tracking a target moving

off-axis to the direction of flight using the same helmet-mounted display as the primary source of
visual information for both tasks.

Considerable effort is being devoted to providing a wider FOV in more advanced systems

(up to 60 ° or 90 °) or providing different sensitivity for the foveal and peripheral elements of such a

display. However, it is not clear whether the additional cost will be justified by an improvement in

performance. Even a 90 ° FOV does not provide all of the peripheral cues available to the unaided

eye in good visibility. Furthermore, if the FOV is increased without also improving the resolution

of the display, the result may be a wide, but inadequately resolved, view of the terrain.

Display Resolution

Pilots have identified display resolution as one of the most critical problems in existing

systems (Bennett and Hart, 1987), although the IHADSS provides 875 lines of display resolution.

To some extent, the appearance of inadequate display resolution could reflect the fact that the image

is presented in close proximity to the pilot's eye. For example, the panel-mounted PNVS display

has the same resolution as the helmet-mounted version, but it is viewed from a greater distance.

This creates the impression of better resolution.

In fact, the apparent limitations in display resolution reflect the capabilities of the entire

system, rather than the quality of the display alone. The effective resolution of the PNVS is less
than 360 horizontal scan lines. Thus, in a 30 ° vertical FOV each scan line covers 5-6 min of visual

angle, as compared to the resolving power of the human eye of about 1 min of arc. This is a sub-

stantial limitation in the level of detail that is available for presentation by the display system. For

example, pilots report having great difficulty in detecting wires or other small targets, unless their

thermal contrast with the surrounding environment is very high.
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Display Contrast

Advanced infrared detectors are capable of detecting temperature differences of approxi-

mately 0.3°C (Haidn, 1985). And a high-quality CRT can display at least 64 shades of gray.

However, the PNVS provides only 10 shades of gray (ranging from bright to dark) to represent

temperature differences in the environment (Tucker, 1984). This limitation severely restricts the

level of detail that can be displayed at any one time and may interact with other limitations (e.g.,

limited resolution) to produce an unacceptable image quality.

Furthermore, specific gain and level selections, which are intended to enhance contrast in

one region of the total range, might limit detail in another. For example, if the system is set to

provide maximum contrast between the extremes, discriminations in the midrange will be limited.

Conversely, when the display is optimized to provide fine discriminations in the midrange, extreme

thermal signatures may not be discriminable. Because of the restricted number of gray shades

provided to depict an image, the tolerance for inappropriate gain and level settings is very limited.

Monocular Presentation

At night, the image presented by the PNVS/IHADSS effectively limits peripheral vision in

the right eye, because the display is so bright in comparison to the environment. However, a full

monocular FOV is still available to the unaided left eye (although visible cues may be limited on a

dark night). Certain details and distance judgments may be obtained more accurately with the

unaided (left) eye than with the aided (right) eye. Thus, pilots must rely on both sources of visual
information. However, under most circumstances, the same object viewed by both eyes cannot be

merged into a coherent binocular image, because of the differences in brightness, perceived size,

and perceived location (resulting from the displaced eyepoint of the sensor.) To make matters

worse, the right eye may be adapted to the bright image provided by the PNVS//HADSS system,

while the left eye might be dark-adapted to the environment. The problem of motion parallax cre-

ated by the displaced eyepoint provided by the sensor location is particularly great in good visibility

(where the unaided eye receives a clear image).

In practice, the use of available visual cues to augment information provided by the sensor

may create more of a handicap than a help, because of competition between images presented to the
two eyes (binocular rivalry). One consequence of binocular rivalry is that the information available

in one eye, by competing for pilot's visual attention, may partially or completely suppress infor-

mation available to the other eye. Furthermore, since pilots are trained to use both eyes when fly-

ing with a PNVS, they must learn how to process disparate visual cues, or shift their attention

between their right eye (to use the PNVS) and left eye (to view the terrain or panel instruments.)

To some extent, the focus of visual attention is under the pilot's conscious control. However,
pilots report increasing difficulty in controlling the focus of visual attention as missions progress.

After less than 1 hr of continuous use, some pilots report they must close one eye (to restore the

visibility of information in the other eye) or exert significant attentional effort (Bennett and Hart,
1987).

Shifting visual attention from one eye to the other (without closing the unattended eye) is

difficult to learn, mentally demanding, and visually fatiguing. Operational experience does not

appear to minimize the problem; rather, pilots learn how to minimize its impact on their operational

performance. It is not clear whether specific training programs, developed to aid pilots in
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developingvisual-attention-managementskills,wouldbeeffectivein improvingpilot's perfor-
manceandin reducingvisualfatigue.

Depth Perception

Because information is presented monocularly, all stereoscopic depth cues for objects in the
immediate environment are lost. Additionally, the difference between the apparent size and loca-

tion of objects viewed directly or through the sensor can provide conflicting information about the

distance of objects in the environment (Roscoe, 1987). Although binocular systems have been

proposed by government and industry researchers, the technical problems associated with fusing

information from two sensors to provide a natural binocular image have not been solved adequately

for operational use. Alternatively, the same image could be presented to both eyes-a biocular dis-

play. While this would eliminate the problem of binocular rivalry, it would limit pilots' abilities to

gain peripheral cues outside the cockpit, see instruments inside the cockpit, or maintain at least one

dark-adapted eye. And, it would still not provide stereoscopic information.

Display Magnification

The displayed information is collimated to optical infinity and magnified to represent a 1:1

mapping with respect to the environment. However, the apparent magnification is not perceived as

being 1:1. This creates a problem when precise distance judgments must be made, as during

landing or formation flying. Pilots report that objects appear to be closer when viewed through a

FLIR than they would with the unaided eye, particularly when the FLIR image is very bright
(Bennett and Hart, 1987). Other distance misperceptions may also result from the difference in

light and dark adaptation of the aided and unaided eyes (the Pulfrich effect, see Tyler, 1974) and

from misaccommodation of the eyes (Roscoe, 1985). Pilots have reported that they minimize this
problem by confirming range with their left eye. This forces them to shift their visual attention

back and forth between the aided (light-adapted) and unaided (dark-adapted) eyes (Bennett and
Hart, 1987).

Summary

Current technology systems provide pilots with a wealth of information that would not

otherwise be available at night or in low visibility. Without visual aiding, the range of environ-
ments in which low-level missions could be performed would be severely reduced. However,

many properties of existing systems (e.g., low resolution; the restricted scale of gray shades; and a

limited, monocular field of view) contribute to the creation of images which contain only a small

part of the information that is available through direct vision in good visibility. Thus, pilots are

deprived of essential information about small obstacles or targets and the detail required to identify
larger objects. The adverse effects of degraded image quality may impose significant workload

and visual fatigue. However, the effects of these factors seem to be relatively unequivocal and

predictable, in comparison with the effects of sensor location, binocular rivalry, and depth percep-

tion. These phenomena may appear in different forms during different flight maneuvers and for

different pilots. Some individuals may even experience exactly the opposite phenomena than

others experience. For example, some pilots tend to overestimate, while others underestimate, size
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anddistances.Thus,considerableskill andexperienceisrequiredfor NOE flight with thePNVS,
andevenhighly trainedpilots considerit to beahighlydemandingtask.

ISSUES RELATED TO HELICOPTER CONTROL

In addition to all of the human factors problems related to the nature of the thermal image

and to the design of the PNVS/IHADSS, one has to bear in mind that the system is installed on a

moving, six-degree-of-freedom platform which is designed to perform a variety of demanding

operational tasks. Some of the most difficult tasks involve NOE flight, off-axis tracking, and

hovering.

To perform each of these tasks well, pilots must learn to distinguish the effects of control

inputs (e.g., changes in the direction, speed, or orientation of the helicopter itself) from the effects
on the visual display of changes in sensor orientation induced by the pilot's head movement. Dis-
orientation can result from a conflict between vestibular cues (based on vehicle motion) and visual

cues (obtained through the sensor). Pilots learn to limit their head movements (to reduce vertigo)
and to time them to achieve a stable direction of gaze before changing their direction of flight (to

reduce spatial disorientation.) They must balance this requirement for limited head movement

against their need to scan the environment (to obtain an acceptable field of regard or to track mov-

ing targets) to compensate for the sensor's narrow FOV.

NOE Flight

In NOE flight, pilots must fly at very low altitudes among natural and human-made terrain

features. Even in good visibility, this presents a challenging task for which there is a very low tol-

erance for error. In reduced visibility, the requirement to perform the same mission using visual

aids (such as the FLIR/PNVS) is even more difficult. In NOE flight, problems associated with the

quality of the visual display, the absence of stereoscopic depth cues, display magnification, and the
offset location of the sensor are particularly pronounced and combine to make rapid and accurate

range estimates, required to avoid natural and human-made obstacles, very difficult. In addition, it
is difficult for pilots to maintain a sense of their general geographical orientation because of the
narrow FOV of the sensor and limitations in its range; their view of the world through which they

are flying is effectively limited to nearby terrain features. Also, the degraded and dynamically

changing quality of the visual representation of objects in the environment make it difficult for

pilots to detect and recognize otherwise familiar objects and terrain features. Finally, the narrow
FOV of the sensor and limitations in the display of surface texture inhibit pilots' abilities to main-

tain visual control of speed, heading, and altitude.

These limitations combine to create a flight environment where pilots must fly slower and

higher to maintain acceptable margins for safety. Further, performing this task imposes high
visual and cognitive demands on pilots and is very fatiguing, thereby limiting the duration of mis-

sions and flight hours.
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Hovering

In an inherently unstable vehicle, or without stability and control augmentation systems,

hovering is extremely difficult and performance is worse when visual information is obtained

through a helmet-mounted display (Landis & Aiken, 1982). Even in a relatively stable vehicle,

such as the Apache, visual reference points vary whenever the pilot moves his or her head and

depth cues are difficult to obtain from the monocular display. Because display resolution is lim-
ited, subtle relative motion cues may be difficult to detect. In addition, peripheral visual cues that

provide an important source of motion information with direct vision are limited on the PNVS/

IHADSS. Thus, pilots supplement the sensor imagery with information available to the unaided

eye (to provide the necessary peripheral motion cues) and with information provided by super-

imposed symbology.

Off-axis Tracking

Since the sensor is attached to the helicopter, its orientation and position with respect to the

environment reflect the forward, lateral, and vertical translation and pitch, roll, and yaw of the

vehicle. However, within the boundaries of its range of movement, the azimuth and elevation of

the FLIR sensor is independent of the orientation of the helicopter. Spatial disorientation and
reduced flightpath control performance may occur when pilots look in a different direction than the

vehicle is moving ("off-axis" tracking). Visual motion cues relevant for flightpath control are more

difficult to interpret when they are obtained through a sensor that is oriented off-axis to the direc-

tion of flight (see fig. 6). Peripheral cues (which could integrate the conflicting sources of infor-

mation) are limited by the narrow FOV, thereby intensifying the problem.

Pilots appear to trade off flight-control performance for visual tracking performance; visual

tracking performance is degraded when it is coupled with the requirement to control the vehicle. In
addition, visual tracking of curved vehicle trajectories is degraded (in comparison to straight tra-

jectories) and tracking error is increased as the apparent rate of movement of a target across the

pilot's visual field is increased (by changes in the distance of a target, the rate of movement of the
target, and/or the velocity of the pilot's vehicle) (Bennett et al., this volume).

Pilots report (Bennett and Hart, 1987) that they are able to perform off-axis tracking for

only short periods of time (no more than a few seconds, depending on the flight mode) before they
must return the orientation of the sensor to correspond to the direction of flight. Thus, pilots come

to a hover (when they must visually track a moving target) or they hand a target off to the copilot.

Research is under way at NASA Ames Research Center (Bennett et al., this volume) and else-

where, to quantify the range of human performance limitations in performing off-axis Iracking and
to develop display augmentations to improve pilots' performance capabilities.

Superimposed Symbology

Several sources of information are often combined on helmet-mounted displays. In the

Apache AH-64 and the Cobra, computer-generated symbology depicting flight-control information

is superimposed on the sensor imagery and presented on the HDU. This composite display
reduces the need for pilots to look at cockpit instruments during low-level flight.
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Flight-control Symbology- In the Apache, computer-generated graphic and symbolic

information about the vehicle's flight and performance status is provided to improve pilots' abilities

to perform flightpath control. The computer-generated display is visible on the monocle no matter

where the pilot's head points. However, since the symbology is always oriented in the direction of

flight, as it would be in a head-up or panel-mounted display, it may not present the flight-control

symbology in an orientation that is compatible with the direction the pilot is looking (fig. 7).

Up to 14 flight parameters may be displayed to ensure vertical and horizontal orientation.

Different subsets of information are presented for different mission segments (e.g., hover, transi-

tion to hover) (fig. 8). The sensitivity of some elements of the display changes for different tasks

(e.g., sensitivity is increased during hover and for given altitudes). Although such increased sen-

sitivity is essential to allow pilots' to maintain a stable hover, learning how to interpret variations in

the movement of symbolic display indicators is difficult during initial training (Bennett and Hart,
1987).

HDU displays of flight symbology are extremely useful, particularly in NOE flight when

pilots are too busy to look at cockpit instruments. However, perceptual problems may be created

by the interference between the computer-generated symbology (which is always oriented in the

direction the vehicle is moving) and the video display upon which it is superimposed (which is

oriented in the direction the pilot is looking) (see fig. 8 ). Furthermore, movement of the HDU

symbology may induce a perception of apparent motion in the video display.

Pilots learn to ignore the superimposed indicators (when they do not need the information)

to resolve the problem of display clutter. This is analogous to ignoring the dividers between panes

of glass in a multipane window when looking outside--one only "sees" the outside scene. How-
ever, for windows, there is a difference in accommodation between the two sources of informa-

tion, facilitating a difference in attentional focus. For the PNVS/IHADSS, on the other hand, the

optical distance of both visual display elements is the same, increasing the difficulty that pilots have

in focusing on one source of visual information or the other. Pilots report that they tend to look

through the symbology at the outside scene (at the expense of viewing critical flight data) or vice

versa (Bennett and Hart, 1987). When they feel that they do need the information, however, they
include it in their scan. One symbol that remains essential is the diamond that represents the "nose"

of the helicopter. It was added at the request of the first pilots to fly the PNVS to orient them to

their direction of flight regardless of where the sensor was pointing.

Targeting Information- Weapons selection, aiming, and other targeting information can
be superimposed on a display, as well. The Target Acquisition/Designation System (TADS) in the

AH-64 provides FLIR, direct-vision optics, and daylight television display options boresighted to

a common line of sight. The TADS has narrow and wide FOV alternatives and an electronic

"zoom" capability. In the current configuration, the TADS is used by the copilot/gunner. How-

ever, in the environment envisioned for more advanced helicopters, such as the LHX, a single pilot

might be required to use a helmet-mounted PNVS for both primary vehicle control and for

weapons delivery. The visual display might be provided by one sensor or a fused combination of

different sensors. In this situation, it is possible that a pilot might need to look in one direction to

maintain vehicle control and in another to track, acquire, and fire at enemy targets. Command

information might be displayed to tell pilots where to look if an automatic target recognition system
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identifiedatargetin adifferentdirectionthantheywerelooking. Thiscouldresultin avisual
displayof superimposedvisualinformationfrom threedifferent spatialorientations:(1) computer-
generatedsymbologyorientedin thedirectionof flight, (2) thedisplayof FLIR informationori-
entedin thedirectionof thepilot'shead,and(3) targetinginformation.

Effects of Vibration

Normally, the human eye is stabilized so as to maintain visual fixation in moving environ-

ments. The vestibular-ocular reflex induces eye movements that oppose those of the head to

maintain a stationary point of regard during voluntary head movements. In vibrating environ-

ments, however, the eye may not be capable of compensating for the high-frequency components.

The detrimental effects of vibration on visual acuity have been well documented (e.g., Griffin,

1977), particularly for panel-mounted displays, where some of the effects of vibration on instru-

ment reading can be compensated for by presenting sufficiently large characters and symbols.

The effects of vibration can be even more severe with helmet-mounted displays, although

the range of vibrations in advanced-technology helicopters has been reduced considerably. The
sensor, which is slaved to the pilot's head movement, cannot discriminate involuntary, vibration-

induced helmet movements from those initiated by the pilot. Relative motion is created between the

image on the head-coupled display and the eye, resulting in retinal blurting, increased errors, and

longer responses. It has been suggested that such "involuntary" head movements might be sensed

by an onboard computer and that this information could be used to provide a stabilized display for
the pilot (Velger, Grunwald & Merhav, 1986). Based on a computer simulation of the vibration

frequencies of helicopters, an adaptive noise-canceling technique has been developed that mini-
mizes the relative motion between viewed images and the eye by shifting displayed images in the

same direction and magnitude as the induced reflexive eye movements. The filter stabilizes the

images in space while still allowing low-frequency, voluntary head motions required for aiming
accuracy.

The Helmet

The IHADSS apparatus is relatively heavy (4 lb), producing discomfort and fatigue. And
most of the weight is in front; counter-balancing weights do not completely eliminate the muscle

fatigue induced by maintaining heads-up attention to the visual scene. In addition, to reduce the

problems associated with involuntary head motion within the helmet, a snug fit is essential, which

may produce "hot spots," further increasing discomfort. However, the pilots' helmets rarely fit
perfectly with the consequence that the position of the monocle, which is attached to the helmet,

may shift in flight. Furthermore, pilots' head movements within an imperfectly fit helmet may not
be directly translated into helmet movements (which actually control the orientation of the sensor),

although this does not present a major problem with current systems.

Crew Size

All contemporary military helicopters have a flight crew of at least two. In attack heli-

copters one crew member is primarily responsible for flying the vehicle, while the other is respon-

sible for navigation, target selection, and weapon control. Recently, the U.S. Army considered the
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possibilityof fielding asingle-pilothelicopter.If a singlepilot wasrequiredto performatypical
Apachemission,heor shewouldhaveto simultaneouslycontrol the helicopter during demanding

flight maneuvers (e.g., NOE, hover) while detecting, acquiring, and destroying targets. It is well
established in the motor-control literature that the concurrent performance of any two nonsynchro-

nized motor tasks is extremely demanding and very difficult (e.g., Keele, 1986). Thus, effective

off-axis target tracking seems to be feasible only if manual flightpath control demands are low (as

in high-altitude, straight-and-level flight) or if at least one of the tasks can be automated. Since the

high-threat battlefield environment requires NOE flight, automated flight and hovering systems

may be required to effectively release a single pilot from the control of the platform (to enable the
pilot to accomplish the weapons delivery task), or effective automated target recognition/

acquisition systems will be required to provide the pilot with reserve capacity to perform manual

flightpath control. The successful design of a single-pilot, multipurpose helicopter will rely on the

accumulation of a considerable body of human factors data in the areas of human information pro-

cessing, workload, motor control, perception, and skill acquisition.

Summary

Helmet-mounted pilot night-vision systems do what they are intended to do. They allow
pilots to perform NOE missions at night and under low-visibility conditions. They do so at a con-

siderable cost to the pilots, however, and adequate training can provide only a partial solution.

Current PNVS/IHADSS systems provide pilots with a monocular display of monochrome
video images with limited resolution. The detector is not sensitive to natural variations in shading

in the terrain and provides a narrow FOV from a displaced visual eyepoint. The appearance of

thermal images may deviate substantially from optical images, and it changes with environmental

conditions. The quality of the displayed image is further affected by (1) the existence of thermal

contrasts in the environment; (2) the number of gray shades with which the sensor represents tem-

peratures differences; (3) atmospheric conditions; (4) the selected polarity, gain, and level; and

(5) vibration. Finally, there are additional limitations created by the display system itself (e.g., the
resolution of the CRT and its monocular format).

These and other characteristics of current technology systems combine to provide pilots

with limited visual cues under many circumstances. This, in turn, inhibits their ability to fly as low

or as quickly as they might with optimal visual information. Some of the specific perceptual and

cognitive problems that might contribute to such limitations in performance are (1) binocular rivalry

(due to the monocular mode of presentation); (2) inaccurate range estimation (due to the offset sen-
sor location); (3) loss of peripheral motion cues (due to the narrow FOV); (4) loss of directional

orientation during off-axis tracking; (5) difficulty in identifying objects (due to limited display res-

olution and contrast and the unique properties of thermal images); and (6) loss of geographical ori-

entation (due to the narrow FOV and limitations in the line of sight created by terrain features that

obscure forward vision during NOE flight). Fatigue, especially visual fatigue, presents a particu-

larly severe problem. And all of the issues discussed above may limit pilots' confidence in their

ability to control their aircraft at low altitudes where misinterpretation of the structure of the terrain

may have severe consequences. Finally, in addition to the operational limitations reported by
experienced pilots, significant problems have been reported during gaining.

Although alternative designs have been suggested, there is insufficient information about

human perceptual and performance limitations (and their interactions) to provide significantly
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improved specifications, training programs, or alternative designs. Additional research is required
to determine the most critical problem areas and to propose solutions that consider the human as

well as the development of technology. Even though critical human factors problems with night-

vision systems have already been identified, relatively little research is currently being conducted.
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Figure 6.- Example of a situation where an object (a tree) seen by the pilot's unaided eye has
passed behind the FOV of the sensor.
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SUMMARY

Converging evidence from several sources indicates that two distinct representations of visual

space mediate perception and visually guided behavior, respectively. The two maps of visual
space follow different rules; spatial values in either one can be biased without affecting the other.

Ordinarily the two maps give equivalent responses because both are veridically in register with the

world; special techniques are required to pull them apart. One such technique is saccadic suppres-

sion: small target displacements during saccadic eye movements are not perceived, though the dis-

placements can change eye movements or pointing to the target.

A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly
moving frame will make a fixed target appear to drift in the opposite direction, while motor behav-

ior toward the target is unchanged. The same result occurs with stroboscopic induced motion,
where the frame jumps abruptly and the target seems to jump in the opposite direction.

A third method of separating cognitive and motor maps, requiring no motion of target, back-

ground or eye, is the "Roelofs effect": a target surrounded by an off-center rectangular frame will

appear to be off-center in the direction opposite the frame. Again the effect influences perception,

but in half of our subjects it does not influence pointing to the target. This experience also reveals

more characteristics of the maps and their interactions with one another--the motor map apparently
has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs

between stimulus presentation and motor response.

In designing spatial displays, the results mean that "what you see isn't necessarily what you

get." Displays must be designed with either perception or visually guided behavior in mind.

The visual world is represented by several topographic maps in the cortex (Van Essen,

Newsome, and Bixby, 1982). This characteristic of the visual system raises a fundamental ques-
tion for visual physiology: do all of these maps work together in a single visual representation, or

are they functionally distinct? And if they are distinct, how many functional maps are there and

how do they communicate with one another? Because these questions concern visual function in

intact organisms, they can be answered only with psychophysical techniques. This paper presents

evidence that there are at least two functionally distinct r6iaresentations of the visual world in nor-

real humans; under some conditions, the two representations can simultaneously hold different

spatial values. Further, we are beginning to understand some of the ways in which the representa-
tions communicate with one another.
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Experiments in several laboratories have revealed that subjects are unaware of sizeable dis-

placements of the visual world if they occur during saccadic eye movements, implying that infor-

mation about spatial location is degraded during saccades (Ditchburn, 1955; WaUach and Lewis,

1965; Brune and Lticking, 1969; Mack, 1970; Bridgeman, Hendry, and Stark, 1975). Yet people

do not become disoriented after saccades, implying that spatial information is maintained. Experi-

mental evidence supports this conclusion. For instance, the eyes can saccade accurately to a target

that is flashed (and mislocalized) during an earlier saccade (HaUett and Lightstone, 1976), and

hand-eye coordination remains fairly accurate following saccades (Festinger and Cannon, 1965).

How can the loss of perceptual information and the maintenance of visually guided behavior exist

side by side?

To begin a resolution of this paradox, we noted that the two kinds of conflicting observations
use different response measures. The saccadic suppression of displacement experiments require a

nonspatial verbal report or button press, both symbolic responses. Successful orienting of the eye
or hand, in contrast, requires quantitative spatial information. The conflict might be resolved if the

two types of report, which can be labeled as cognitive and motor, could be combined in a single

experiment. If two pathways in the visual system process different kinds of information, spatially

oriented motor activities might have access to accurate position information even when that infor-

marion is unavailable at a cognitive level that mediates symbolic decisions such as button pressing

or verbal response. The saccadic suppression of displacement experiments cited above address
only the cognitive system.

In our f'trst experiment on this problem (Bridgeman et al., 1979), the two conflicting observa-

tions (saccadic suppression on one hand and accurate motor behavior on the other) were combined

by asking subjects to point to the position of a target that had been displaced and then extinguished.

Subjects were also asked whether the target had been displaced or not. Extinguishing the target,
and preventing the subjects from viewing their hands (open-loop pointing), guaranteed that only

internally stored spatial information could be used for pointing. On some trials, the displacement

was detected, while on others it went undetected, but pointing accuracy was similar whether the
displacement was detected or not.

This result implied that quantitative control of motor activity was unaffected by the perceptual
detectability of target position. But it is also possible (if a bit strained) to interpret the result in

terms of signal detection theory as a high response criterion for the report of displacement. The

first control for this possibility was a two-alternative, forced-choice measure of saccadic suppres-
sion of displacement, with the result that even this criterion-free measure showed no information

about displacement to be available to the cognitive system under the conditions where pointing was
affected (Bridgeman and Stark, 1979).

A more rigorous way to separate cognitive and motor systems was to put a signal only into the

motor system in one condition and only into the cognitive system in another. We know that

induced motion affects the cognitive system, because we experience the effect and subjects can
make verbal judgments of it. But the above experiments implied that the information used for

pointing might come from sources unavailable to perception. We inserted a signal selectivity into

the cognitive system with stroboscopic induced motion (Bridgeman, Kirch, and Sperling, 1981).

A surrounding frame was displaced, creating the illusion that the target had jumped, although it

remained fixed relative to the subject. Target and frame were then extinguished, and the subject
pointed open-loop to the last position of the target. Trials where the target had seemed to be on the

left were compared with trials where it had seemed to be on the right. Pointing was not
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significantlydifferentin thetwo kindsof trials,showingthattheinduced-motionillusion did not
affectpointing.

Informationwasinsertedselectivelyinto themotorsystemby askingeachsubjectto adjusta
realmotionof thetarget,jumpedin phasewith theframe,until thetargetwasstationary.Thusthe
cognitivesystemspecifiedastabletarget.Nevertheless,subjectspointedin significantlydifferent
directionswhenthetargetwasextinguishedin the left or therightpositions,showingthatthedif-
ferencein realtargetpositionswasstill availableto themotorsystem.Thevisual systemmust
havepickedup thetargetdisplacement,butnot reportedit to thecognitivesystem,or thecognitive
systemcouldhaveascribedthevisuallyspecifieddisplacementto anartifactof framemovement.
Thusadoubledissociationoccurred:in oneconditionthetargetdisplacementaffectedonly the
cognitivesystem,andin theotherit affectedonlythemotorbehavior.

Dissociationof cognitiveandmotorfunctionhasalsobeendemonstratedfor theoculomotor
systemby creatingconditionsin whichcognitiveandmotorsystemsreceiveoppositesignalsatthe
sametime. Again the experiment involved stroboscopic-induced motion; a target jumped in the
same direction as a frame, but not far enough to cancel the induced motion. The spot still appeared

to jump in the direction opposite the frame, while it actually jumped in the same direction. Sac-
cadic eye movements followed the veridical direction even though subjects perceived stroboscopic

motion in the opposite direction (Wong and Mack, 1981). If a delay in responding was required,

however, eye movements followed the perceptual illusion, implying that the motor system has no

mel.aory and must rely on information from the cognitive system under these conditions.

All of these experiments involve motion or displacement, leaving open the possibility that the

dissociations are associated in some way with motion systems rather than with representation of
visual space per se. A new series of experiments in my laboratory, however, has demonstrated

dissociations of cognitive and motor function without any motion of the eye or the stimuli at any
time. The dissociation is based on the Roelofs effect (Roelofs, 1935), a tendency to misperceive

target position, in the presence of a surrounding frame presented asymmetrically, in the direction

opposite the offset of the frame. The effect is similar to a stroboscopic induced motion in which

only the final positions of the target and frame are presented (Bridgeman and Klassen, 1983).

METHOD

Subjects

The subjects were nine undergraduate volunteers and the author. Six of the subjects were

naive with respect to the purposes of the experiment; the others assisted with the experiments, as

well as serving as subjects.

Apparatus

Subjects sat with stabilized heads before a hemicylindrical screen that provided a clear field of

view 180 ° wide x 50 ° high. A rectangular frame 21 ° wide x 8.5 ° high x 1 ° in width was pro-

jected, via a galvanic mirror, either centered on the subject's midline, 5 ° left, or 5 ° right of center.

Inside the frame, an "x" 0.35 ° in diameter could be projected via a second galvanic mirror in one of
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five positions,2° apart, with the middle "x" on the subject's midline (Fig. 1). A pointer with its

axis attached to a potentiometer mounted near the center of curvature of the screen and its tip near

the screen gave a voltage proportional to the tip's position, with a simple analog circuit. The volt-

age was fed into an A/D converter of a laboratory computer that controlled trial presentation and
data collection. Perceived target position was recorded from a detachable computer keyboard

placed in front of the subject. All keys except the five keys corresponding to the five target posi-
tions were masked off.

PROCEDURE

Training

Subjects were first shown the five possible positions of the target in sequence on an otherwise

blank screen. Then they saw targets exposed for 1 sec and estimated their positions with the five

response keys ("judging trials"), until they were correct in five consecutive trials. Next, they were

trained on pointing, with the same stimuli ("pointing trials"), until they spontaneously returned the
pointer to its rightmost position (as initially instructed) for five consecutive trials. In both condi-

tions, subjects were instructed to wait until the offset of the stimulus before responding. Presenta-

tion of the target alone forced the subjects to use an egocentric judgment, and the long display time
reduced the possibility of target onset eliciting a spurious motion signal that might affect responses.

No Delay Condition

The 30 types of judging and pointing trials were mixed in a pseudorandom order. Each trial

type was repeated 5 times, for a total of 150 trials/block. Trial order was restricted so that pointing
trials and judging trials with the same target and frame positions would alternate in the series. At

stimulus offset, subjects heard a short "beep" tone to indicate a judging trial or a longer "squawk"
tone ,o indicate a pointing trial. There was a rest period after each 50 trials.

Trials were collated by the computer and a separate two-way ANOVA was run for each

response type (assessing target main effect, frame main effect, and interaction).

Delay Condition

Procedures were the same except that a 4-sec interval was interposed between stimulus offset
and the tone that indicated the type of response.
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RESULTS

No Delay Condition

For all subjects, there was a significant main effect of target position in both trial types and a

significant main effect of frame position for judging trials. Thus, all subjects showed a Roelofs

effect (Fig. 2).

The main effect of frame position in pointing trials showed a sharp division of the subjects into

two groups: 5 of the 10 subjects showed a highly significant Roelofs effect (p < 0.005), while the

other 5 showed no sign of an effect (p > 0.18). Thus, responses to pointing and judging trials

were qualitatively different for half of the subjects, showing a Roelofs effect only for judging.

Four of the five subjects who showed a Roelofs effect in pointing were females. Thus, a sex

effect is possible in this condition, with females more likely to code the target position in a sym-

bolic form. The number of subjects, however, is too small to draw firm conclusions on this issue.

Delay Condition

With a 4-sec delay interposed between display offset and tone, 9 of the 10 subjects showed a

significant Roelofs effect for the judging task (p < 0.01) and 8 of the 10 showed a significant effect

for the pointing task. One of the two remaining subjects showed no significant effect of frame
position for either task. The other subject whose pointing behavior still showed no effect of the

frame (Fig. 3) was retested with an 8-sec delay between display offset and tone. A Roelofs effect
was found for both pointing and judging trials (p < 0.001) (Fig. 4).

In summary, interposting a long enough delay before the response cue forces all subjects to use

pointing information that is vulnerable to bias from the frame position, even though half of the

subjects were not vulnerable to this bias when responding immediately.

DISCUSSION

These experiments show that perception of a Roelofs effect is robust, being seen by nearly all

subjects under all delays. The Roelofs effect in visually guided behavior, though, depends much
more strongly on the subjects and conditions. Half of the subject showed an effect of a surround-

ing frame on pointing behavior. The remainder showed the effect only when a long enough delay

was interposed between target presentation and response.

The appearance of the Roelofs effect with a delay between stimulus and motor response is

reminiscent of the results of Wong and Mack (1981): saccadic eye movements followed a veridical

motion with a short delay, but followed a perceived motion in the opposite direction after a longer

delay. If eye movements and visually guided behavior of the arm were controlled by a single

motor-oriented internal map of the visual world, then we would expect the effects of delay to
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influence eye and arm similarly, and the Wong and Mack results and our results could be explained
in the same way.

There is now some evidence that oculomotor and skeletal motor systems do indeed share one
map of visual space (Nemire and Bridgeman, 1987). Normally, eye and hand behavior are not

correlated (Prablanc et al., 1979), in our interpretation because eye and hand motor systems read

their information from the same visual map through separate, independent noise sources. To show

the identity of visual information driving these two systems, we disturbed the normally veridical

mapping process by having subjects make repeated saccades in darkness. This resulted in saccade

undershoot, but equally great undershoot of manual pointing.

Our conclusion is that the normal human possesses two maps of visual space. One of them
holds information used in perception: if subjects are asked what they see, the information in this

"cognitive" map is accessed. The other map drives visually guided behavior, for both eye and
arm. The "motor" map is not subject to illusions such as induced motion and the Roelofs effect.

In this sense it is more robust, but as a result it is less sensitive to small motions or fine-grained

spatial relationships. It also has no memory, being concerned only with the here-and-now corre-

spondence between visual information and motor behavior. If a subject must make motor

responses to stimuli no longer present, this system must take its spatial information from the cog-
nitive representation, and brings any cognitively based illusions along with it.

An alternative explanation of the results has been suggested (Ian Howard, personal communi-

cation, Sept. 2, 1987); presentation of an off-center frame might bias the subject's subjective

straight-ahead in the same direction as the frame's offset. Judging of point position would then be

biased in the opposite direction because the subject bases his or her judgments on an offset straight

ahead direction. Pointing, however, would remain the same because the subject has not in fact

moved, and arm position must be egocentric. This alternative can be tested empirically by having
subjects point to the center of the apparatus when the frame is presented in center, left, or fight

position. Preliminary data from three subjects indicate that frame position has no effect on pointing
straight ahead.

Finally, we can apply this conception of two maps of visual space to design of spatial displays.
Any display where perception is the primary goal, such as displays of the status of instruments, is

subject to induced-motion illusions, Roelofs effects, and other cognitive biases. The designer can

take advantage of these effects in designing such displays, but must beware that they do not distort
the data displayed.

Displays which guide real-time behavior, on the other hand, are not subject to such illusions.

The designer need not worry, for instance, about background motions affecting visually guided
behavior toward a target (Bridgeman, Kirch, and Sperling, 1981). But information must be avail-

able continuously, for the internal map guiding these behaviors has no significant memory.
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Figure 1.- Stimulus array used in pointing/judging experiments. The frame could be centered
(top), biased 5 ° left (middle), or biased 5 ° right (bottom). A target appeared in one of the five

positions indicated in the top frame. Other frames show the position of the center target.
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Figure 2.- Judging and pointing behavior immediately after stimulus offset, a) Judging target
position with a five-alternative, forced-choice procedure. The separation of three curves
corresponding to the three frame positions is due to the Roelofs effect.
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Figure 2.- Concluded. b) Pointing to targets under the same perceptual conditions, in trials
intermingled with the judging trials. Overlap of the three curves indicates lack of influence of
frame position on pointing behavior. Data are from one subject.
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Figure 3.- Judging and pointing after a 4-sec delay. In this subject, no Roelofs effect is evident
for pointing; the other subjects showed an effect at this delay.
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Figure 3.- Concluded.
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Figure 4.- Judging and pointing after an 8-sec delay. A Roelofs effect for pointing has appeared.
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THE EFFECTS OF VIEWPOINT ON THE VIRTUAL SPACE OF
PICTURES

H. A. Sedgwick
Schnurmacher Institute for Vision Research

S.U.N.Y. College of Optometry, New York, New York

1. INTRODUCTION

Pictures are made for many different purposes (Hagen, 1986; Hochberg, 1979). This dis-
cussion is about pictorial displays whose primary purpose is to convey accurate information about

the three-dimensional spatial layout of an environment. We should like to understand how, and

how well, pictures can convey such information. I am going to approach this broad question

through another question that seems much narrower. We shall find, however, that if we could

answer the narrow question, we should have made a good start on answering the broader question
as well.

Every pictorial display that presents a precise perspective view of some three-dimensional
scene has a single geometrically correct viewpoint. 1 In most viewing situations, however, the

observer is not constrained to place his or her eye precisely at this correct viewI_int; indeed _e
observer generally has no explicit knowledge of the location of this viewpoint, z My narrow

question is: "What effect does viewing a picture from the wrong location have on the virtual space

represented by that picture?"

This question is in itself of theoretical as well as practical importance. It has received con-

siderable attention, but its answer is still far from being clear. The research literature is fragmen-

tary and conflicting. I believe that a more vigorously applied theoretical analysis can clarify the

issues and can help in evaluating the existing literature.

My theoretical analysis follows the approach developed by J. J. Gibson (1947, 1950,

1954, 1960, 1961, 1971, 1979). I shall be referring frequently to the optic array, which is

Gibson's term for the structured array of light reflected to a point of observation by the surfaces of
the environment. I shall also be relying on Gibson's concept of available visual information.

Information is said to be available in the optic array when some projective structure in the optic

array mathematically specifies, with appropriate constraints, some structure in the environment.

The optic army typically contains multiple, redundant sources of information for the spatial layout
of the environment.

The theoretically determined availability of visual information of course does not guarantee

that such information will be used by a human observer. The extent to which any such information

actually influences perception is a separate question that must be addressed empirically. The con-

tention of Gibson's approach is simply that we are not in a proper position to formulate or interpret

empirical investigations of human visual perception until we understand the underlying available
information on which any successful perception must be based.

This discussion will concentrate on theoretical analysis. At several points, however, I shall

briefly indicate how well this analysis accords with the empirical work that has been done on
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human pictorial perception. More detailed reviews of this subject are offered elsewhere (Cutting,
1986a; Farber and Rosinski, 1978; Hagen, 1974; Kubovy, 1986; Rogers, 1985; Rosinski and
Father, 1980).

To simplify the discussion I am going to consider separately the effects of deviating from

the correct viewpoint in each of three orthogonal directions: deviations perpendicular to the picture

plane (that is, being too close or too far from the picture), lateral deviations parallel to the picture
plane, and vertical deviations parallel to the picture plane. Any possible viewing position can then
be interpreted as some combination of these three deviations.

2. THEORETICAL ANALYSIS

2.1 Viewing from Too Close or Too Far

What is the theoretical effect of viewing a pictorial display from too close or too far3? As

we approach or withdraw from the picture, its projection in the optic array expands or contracts

around the center of the picture, which is the point at which a perpendicular from the viewpoint

pierces the picture plane. If we let z be the correct distance from the picture and z' be our actual
distance, and let A and A' be the angular separations from the center at these two distances,

respectively, of some other point on the picture, then

tan A/tan A' = z'/z = m

where m is a constant. Thus the optic array projection of the picture is magnified or minified by
l/m, where m measures how close or how far we are, relative to the correct distance. 4

What, in theory, is the effect on the virtual space of the picture of magnifying or minifying
its projection in the optic array? We can begin to answer this question by looking at the available

visual information that is present in the perspective structure of the optic array, by which I mean

the vanishing points of straight edges in the environment and the vanishing lines of planar
surfaces. 5

Let us imagine a picture of a flat, endless ground plane covered with a regular texture rep-
resented by a grid of lines. The horizon, or vanishing line, of the ground, will be located at eye

level on the picture plane. If our point of observation is located at a height h above the ground,

then the distance d along the ground to any particular grid line parallel to the picture plane is given
by the simple expression

d = h(1/tan G)

where G is the optic array angle subtended between the horizon of the ground plane and the grid
line.

We can now combine these two expressions to derive the theoretical etfect of **mgnification

or minification. If we let d' be the geometrically specified distance of the grid line when the pic-

ture is seen from the incorrect viewpoint and let G' be the new optic array angle corresponding to
G, then
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d' = h(1/tan G')

substituting for G',

d' = h(m/tan G)

and substituting again,

d' =rod

Next, if we let s be the specified separation in depth between any two successive grid

lines, at distances dl and d2, when the picture is seen from the correct viewpoint and let s', dl',

and d2' be the specified separation and distances when seen from the incorrect viewpoint, then

s' = d2' - dl'
= md2 - mdl

= m(d2 - dl)
= ms

Thus as we approach the picture, the geometrically specified depths in the picture are com-

pr_ ssed proportionally to the closeness of our approach and as we move away from the picture,

depths are expanded proportionally (fig. 1). 6

Consider now what happens to frontal plane dimensions. The tangent of the angle F

subtended by a width w that is parallel to the picture plane is inversely proportional to its distance

from the point of observation (assuming for simplicity that the width is measured from the center

of the picture)

w=dtanF

As we approach the picture, the specified distance of w decreases, but its optic array angle F

increases in the same proportion, so that w remains constant (fig. 2)

w' = d' tan F' = (md)(tan F/m) = d tan F = w

The depth of the pictured scene is thus compressed relative to its frontal dimensions.

Shapes that are not in the frontal plane are distorted. The square grid covering the ground plane,

for example, becomes a grid of rectangles whose depth to width ratio is m (fig. 3).

We may note here that all distances specified in the virtual space of the picture depend on

h, the height of the viewpoint above the ground plane, which thus provides a scale factor for all
distances, as well as sizes, in the picture. Because h itself is not geometrically specified in the

picture, its value may be indeterminate. 7 This indeterminancy of h puts in doubt the appropriate-

ness of comparing absolute distances or sizes across different pictures or across different views of

the same picture. The ratio, however, of depth to width, s/w or s'/w', does not depend on h;

thus, geometrically specified compression of shape by the factor m is an invariant effect of too

close viewing.
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Geometricallyspecifiedanglesandorientations in the pictured scene are also changed by

approaching the picture. This result follows directly from the compression that occurs, but it is
instructive to derive the result in a different way.

Every set of parallel lines in the pictured scene has a vanishing point on the picture plane

(lines parallel to the picture plane have their vanishing points at infinity on the picture plane). The
three-dimensional orientation of a set of parallel lines is equal to the orientation of a line from the

point of observation to their vanishing point. This very simple optic array relation specifies the

pictured orientation of any edge once its vanishing point is known (Hay, 1974; Sedgwick, 1980).

Edges perpendicular to the picture plane h_.ve their vanishing point at the center of the pic-

ture. As we approach the picture, every vanishing point except for the one at the center of the pic-
ture increases its optic array separation from the central vanishing point. Thus the specified orien-

tations of all nonperpendicular edges move closer to being parallel to the picture plane. For exam-

ple, a square ground plane grid oriented at 45 ° to the picture plane becomes a grid of squashed

diamonds (fig. 4).

If we let E be the angle, measured relative to the straight-ahead, that a vanishing point
subtends at the correct viewpoint, and let E ° be the angle that it subtends when the viewpoint is

too close or too far, then the distortion D in the specified orientation of edges having that

vanishing point is given by E minus E'. 8 The relation between E and E' is the same as for any

other optic array angles measured from the center of the picture, namely

tan E/tan E' = m

Calculating D as a function of E for several values of m, we obtain a family of curves
showing no distortion for orientations perpendicular (0 °) or parallel (-90 ° or 90 °) to the picture

plane, with maximum distortion at intermediate values (fig. 5). For example, for m equal to
either 2 or 0.5, the maximum distortion approaches 20 °.

A similar analysis can be made for the orientations of planar surfaces. The angle subtended

between the vanishing line of a slanted surface and the vanishing line of the ground plane is equal

to the three-dimensional angle between the depicted surface and the ground (Sedgwick, 1980). As

we approach the picture plane, geometrically specified surface orientations are distorted in just the

same way as are edge orientations.

Perceptually, effects qualitatively similar to those predicted theoretically here can be seen by
a careful observer moving closer or farther from a picture containing strong linear perspective. If

the perspective information in the picture is weaker, the distortions may be much harder to see.
Most empirical investigations, but not all, have found such distortions in human picture perception,

although not always at the magnitude predicted. 9 I shall say a bit more about the reasons for the

discrepancies between investigations later.

2.2 Viewing from the Side

Let us now consider what happens when we view a pictorial display from the side. 10 It is

easy to see that when the viewpoint is displaced laterally, maintaining the same distance from the

picture plane, the horizon of the ground and all of the grid lines parallel to the picture plane simply
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slidealongthemselvesin theopticarray. Thustheangularseparationof eachof thesegrid lines

from the ground horizon remains unchanged. Consequently, the geometrically specified distance

of each of these grid lines, relative to the height of the viewpoint, also is unchanged (fig. 6).

As the viewpoint slides to the right, for example, each point in the geometrically specified

virtual space of the picture slides to the left, with its projected point on the surface of the picture

acting as a stationary fulcrum. This lateral shift in virtual space is thus directly proportional to, but

opposite in sign from, the amount of the viewpoint's displacement; it is also directly proportional

to the distance of the point from the picture plane, and is inversely proportional to the viewpoint's
distance from the picture plane (fig. 7). The overall effect of this viewpoint displacement is to

produce a lateral shear in the geometrically specified virtual space of the picture (fig. 8). Frontal

plane dimensions and orientations are unchanged, but shapes and orientations extending in depth
are all distorted.

We can readily determine the specified shifts in the orientations of pictured edges and sur-

faces by again making use of the perspective structure of the picture. Let us consider, as an exam-

ple, the orientations of horizontal edges, whose vanishing points lie on the horizon of the ground

plane. As the viewpoint shifts laterally, its angular relation to each of these vanishing points

changes. We shall let E again be the angle, measured relative to the straight-ahead, that the van-

ishing point makes with the correct viewpoint, and let E' be the angle that it makes after the van-

ishing point has shifted laterally. We can express this lateral shift as the ratio, k, between the
amount, r, of the shift, and the distance, z, of the viewpoint from the picture plane. It is easy to

see that (fig. 9)

tan E' = tan E + k

If we express the position of the shifted viewpoint in terms of its angular deviation, V,
from the correct viewpoint, then

tan V =k

so that

tan E' = tan E + tan V

We can use this relation to determine the specified distortion of orientation, E' minus E, as
a function of the correct orientation E, for a variety of angular shifts V of the viewpoint

(fig. 10). The resulting family of curves shows that the specified distortions in orientation can be

very large, approaching 180 ° as V approaches :k90 °, which is paraUel to the picture plane, and that
the orientation E at which the distortion is maximal increases as V increases.

We may note that the same distortions in orientation would also be specified for vertical

planes in the virtual space of the picture when the viewpoint is displaced laterally.

Perceptually, again, a careful observer comparing the appearance of a picture seen from one

side or the other can notice differences in apparent orientation if the picture contains sufficient per-

spective information. Some empirical investigations have also found results that are qualitatively

similar to those derived here, although others have not. 11 Again, I shall refer back to these dis-

crepancies a little later.
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2.3 Viewing from Too High or Too Low

Let us now briefly consider what happens when the viewpoint is too high or too low. This

is again a displacement parallel to the picture plane, so the geometrically specified distortions in the

virtual space of the picture are identical in form to those produced by lateral shifts, except that here

the virtual space is sheared vertically instead of laterally.

Thus, for example, if we consider a plane in virtual space that is rotated around a horizontal

axis so that it makes an angle E with the ground, its specified slant E', when seen from an incor-

rect viewpoint having a vertical angular deviation V, is given by the same relation

tan E' = tan E + tan V

Notice that if we are considering the ground plane itself, then E = 0, so that E' = V.

That is, if we must look down by a certain angle to see the pictured horizon, then the ground plane

is specified as slanting down by that same angle.

3. THEORETICAL COMPLICATIONS

So far we have seen how we can use the perspective structure of the optic array to deter-

mine the geometrically specified sizes, distances, and orientations of surfaces and edges in the vir-

tual space of a picture. We have also seen how this visual information, when it is present, speci-

fies distortions in the pictured layout when we observe the picture from the wrong viewpoint.

Unfortunately for our ease of understanding, there are theoretical complications that are not taken

into account by this straightforward analysis. We need to consider some of these complications
now.

3.1 Resolving Multiple Sources of Visual Information

In a normally complex pictorial display, there are available other sources of visual informa-

tion for spatial layout besides those arising from the perspective structure of the picture. How
these multiple sources of information, which are normally partially redundant and partially com-

plementary, may be combined into a single perceptual interpretation is a difficult and as yet unset-

tled question. 12 The difficulty is increased when the picture is observed from the wrong viewpoint

because these different sources of information do not all predict the same distortions; nor is it

always easy to tell what they do predict.

As an example, consider some of the information arising from surface texture (Gibson,

1950; Sedgwick, 1983, 1986). If several edges are resting on a surface that is uniformly textured,

then the relative lengths of the edges are specified by the relative amounts of texture that they cover;
likewise, the relative distances between the edges are specified by the relative amounts of texture

between them. This texture scale information is as valid for edges that extend into depth as for

those in the frontal plane; it thus serves to specify the shapes and the relative sizes and distances of

objects resting on a common textured surface such as the ground plane.
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It iseasyto seethatall suchtexturescaleinformationis completely invariant over changes
in viewpoint because such changes do nothing to alter the depicted amounts of texture between or

under the objects in the picture. If, for example, we approach the picture of a square object resting

on the textured ground, the specified object remains square because each of its edges continues to
cover an equal amount of texture. On the other hand, according to the analysis based on perspec-

tive structure, the specified object is compressed into a rectangle whose width is greater than its

depth.

This apparent contradiction between the distortions predicted by these two sources of visual
information can be resolved, but only in a way that further complicates our analysis. I mentioned

earlier that any visual information entails constraints on the environment; if these constraints are

violated, then the information is no longer valid. In the case of texture scale information, an
essential constraint is that the texture's distribution across a surface be at least statistically uniform.

Yet, in the example that we are considering now, when we come too close to the picture, perspec-

tive analysis specifies that the texture of the ground is itself compressed in the depth dimension.
Thus the uniform distribution constraint is violated and texture scale information is no longer valid.

A visual system might do any of a number of things when faced with this situation. It

might simply reject texture scale information as being invalid. It might go ahead and use texture

scale information anyway. It might recognize that the viewpoint is incorrect. It might abandon the

attempt to find a consistent virtual space for the picture. It might adopt a modified version of tex-
ture scale information using compressed texture. It might do something intermediate between

some of these options. Analysis only indicates the possibilities without specifying which one will

be adopted by any particular visual system.

A number of other sources of visual information, such as right-angle constraints (Perkins,
1972, 1976) and orientation-distribution constraints (Witkin, 1980), present similar difficulties

when the viewpoint is incorrect, but there is not space to consider these additional difficulties here.
Careful analysis of the interactions between these different sources of information should give us a

basis for manipulating the information content of pictures so as to better determine the perceptual
effects they produce.

3.2 Constancy and the Dual Nature of Pictures

A second set of theoretical complications arises from what has often been referred to as the

"dual nature" of pictures (Gibson, 1954; Haber, 1979, i980a, 1980b; Hagen, 1974, 1986;

Hochberg, 1962, 1979; Pirenne, 1970). In addition to being a representation of a spatial layout

existing in a three-dimensional virtual space that lies beyond the plane of the picture, a pictorial

display is also a real object consisting of markings of some sort, usually on a flat surface. Nor-
mally, visual information for the flat surface of the picture is made available by binocular stereop-

sis, by motion parallax, by the oculomotor adjustments of convergence and accommodation, by the

frame of the picture, and by the surface texture of the picture.

To perceive pictures, a perceptual system must be able, to some extent, to differentiate its
response to the picture's virtual layout from its response to the real layout of the picture's surface.

The human visual system seems able to make this differentiation, but not without some interaction,

or "cross talk," between its responses to these two classes of information.
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Wecangetsomeunderstandingof one effect of the picture surface by examining the rela-

tion between the picture plane and the optic array. If x measures a separation in the picture plane

from the center of the picture, which we have already defined as the point where a perpendicular

from the viewpoint pierces the picture plane, and A measures the optic array angle subtended by
this separation, then x is related to A by the relation

x=ztanA

where z is the distance from the viewpoint to the picture plane. Near the center of a picture there

is a close congruence between the optic array projection and the fiat picture plane projection. This

is because the tangent function is nearly linear for small angles. For larger angles, however, the

tangent function becomes highly nonlinear, and consequently the optic array projection and the
picture plane projection become strongly noncongruent.

Perceptually, the cross talk between the picture surface and the virtual space of the picture,
as specified in the optic array, becomes most noticeable when the picture plane projection and the

optic array projection are noncongruent. Toward the edges of wide-angle pictorial displays, for

example, the projections on the picture plane and in the optic array are still geometrically correct,

but objects in the virtual space of the picture often appear to be distorted (Pirenne, 1970, 1975;
Kubovy, 1986). 13 It seems that the noncongruent shape on the surface of the picture takes on a

perceptual salience that interacts with the virtual space of the picture.

A similar noncongruence between the picture plane and the optic array is produced when

the viewpoint is displaced laterally or vertically from the correct viewpoint. Again, the noncon-

gruent shape on the surface of the picture may interact perceptually with the virtual space of the
picture, but here its effect would be to diminish the distortion that is specified in the optic array.

This would result in some degree of "constancy" in the virtual space of the picture in the sense that

the virtual layout would not be as distorted as the optic array information would predict.

These effects of the picture's surface on the perceived virtual space of the picture could be

eliminated, in principle, by removing the visual information for the picture's surface. Using a

monocular display, restricting head movements relative to it, hiding the frame of the display, and
so on, would all contribute to this result (Ames, 1925; Enright, 1987; Schlosberg, 1941; P. C.
Smith and O. W. Smith, 1961).

3.3 The Hypothesis of Pictorial Compensation

Finally, many theorists have suggested that when information for the picture surface is

available, the human visual system may be able to compensate for being at the wrong viewpoint
and so avoid distortions in the virtual space of the picture (Cutting, 1987; Farber and Rosinski,

1978; Hagen, 1974, 1976a, 1976b; Kubovy, 1986; Perkins, 1973, 1980; Pirenne, 1970;

Rosinski, 1976; Rosinski and Farber, 1980; Rosinski, Mulholland, Degelman, and Farber, 1980;

Wallach and Marshall, 1986). This compensation process would operate by either detecting or
assuming a "correct" position of the viewpoint. The optic array information would then be

adjusted to determine the virtual layout as it would be seen from this correct viewpoint.

Although a number of experiments have been offered in support of this view, it seems to

me that, on balance, the compensation hypothesis is neither necessary nor sufficient to account for
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thebulk of theempiricalresults. It is notnecessarybecause,aswe havejust seen,however
sketchily,thereareotherexplanationsavailablefor someof thedisparitiesthatexistbetweenthe
distortionspredictedby perspectivestructureandthoseactuallyfound. Moreover,theseother
explanationsaremoreparsimonious,in thattheyarederivedfrom theanalysisof general
perceptualprocesseswithout havingtopostulatespecialprocessesthatexistsolelyfor perceiving
picturesfrom thewrongviewpoint. Thecompensationhypothesisis notsufficientbecauseit does
notaccountfor theconsiderablenumberof experimentalresultsthatfind distortionsin virtual space
evenwhenthereis informationavailablefor thesurfaceof thepicture(Bengston,et al., 1980;
Goldstein,1979,1987;Wallach,1976,1985). Finally, it seemsto methatacarefulreadingof
severalof thekeyexperimentsofferedin favorof thecompensationhypothesiscastssomedoubt
on thefirmnessof their conclusions.14

4. CONCLUSION

As aconclusionto thisbriefdiscussion,I wouldsuggestthatpictureperceptionis notbest
approachedasaunitary,indivisible process.Rather,it is acomplexprocessdependingonmulti-
pie,partiallyredundant,interactingsourcesof visual informationfor boththereal surfaceof the
pictureandthevirtual spacebeyond.Eachpicturemustbeassessedfor theparticularinformation
thatit makesavailable.This,I would suggest,will determinehowaccuratelythevirtual space
representedby thepictureis seen,aswell ashowit is distortedwhenseenfrom thewrong
viewpoint.
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NOTES

1. For a camera image, this point is determined by the optics of the imaging system; for a dis-

play created by a draftsman or a computer, this point is determined by the relation between the

center of projection and the projection plane (Carlbom and Paciorek, 1978; Sedgwick, 1980).

2. A complex pictorial display generally does contain sufficient information, under certain

constraints, to specify its own correct viewpoint. This issue is discussed by Green (1983), Jones

and Hagen (1978), and Sedgwick (1980).

3. A number of analyses of this problem have been offered. The first systematic analysis

appears to come from La Gournerie (1859), whose work has been discussed more recently by

Pirenne (1970, 1975), Kubovy (1986), and Cutting (1987). Other analyses, apparently indepen-

dent of La Gournerie, have been given by Purdy (1960), Farber and Rosinski (1978), Lumsden

(1980), and Rosinski and Farber (1980).

Obtaining an unambiguous three-dimensional interpretation of a pictorial display requires

that some constraints be placed on the possible interpretations. In the above analyses, those refer-
ring to La Gournerie and that of Farber and Rosinski (1978) do not make these constraints explicit.

The other analyses use explicit constraints derived from analyses of normally viewed pictures.

Purdy (1960) bases his analysis on gradients of texture, Lumsden bases his on familiar size, and

Rosinski and Farber base theirs on linear perspective. I offer two analyses here, one based on the

ground plane and the other based on perspective structuic, as suggested in Sedgwick (1980). All

of these analyses converge on the same results.

A different analysis, reaching different results, has been offered recently by McGreevy and

his colleagues (Ellis et al., 1985; McGreevy and Ellis, 1984, 1986; McGreevy, Ratzlaff, and Ellis,

1987). McGreevy's analysis proceeds by arbitrarily constraining all virtual distances from the

picture plane to be unchanged by viewing position. This analysis has the weakness that it assumes

a knowledge of these distances without indicating how they could be determined by an observer of

the display, either when viewing from the wrong viewpoint or when viewing from the correct
viewpoint. The question of how virtual layout could be determined here is made difficult because

the constraint that is imposed leads to violations of all of the other constraints mentioned in the

preceding paragraph.

Another kind of analysis, based on optimizing the match between a noisy registration of the

projection and a noisy a priori internal model of the spatial layout has been offered recently by
Grunwald and Ellis (1986). There is not room here to consider the interesting question of how

such a model-based approach to spatial layout might be reconciled with the constraint-based

approach taken in this paper.

4. Approaching a picture is optically equivalent to viewing the pictured scene through a tele-

photo lens, and withdrawing from the picture is optically equivalent to viewing the scene through a
wide-angle lens (Lumsden, 1980; Rosinski and Farber, 1980).

5. Perspective structure is usually only implicit in the optic array. The available visual infor-

mation that specifies this perspective structure is not discussed in this paper, but I have analyzed it
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in detailelsewhere.Not allpictorial displayscontainsufficientinformationto completelyspecify
their perspectivestructure(Sedgwick,1983,1986,1987a).

6. Thereis aninvariantassociatedwith theopticarraygradientprojectedfrom equallyspaced
grid linesparallelto thepictureplane. If s is theseparationin depthbetweenanytwo successive
grid lines,then

s = d2 -dl = h(1/tanG2- 1/tanG1)

Thus,for anytwo successiveopticarrayanglesG1 andG2 in thisgradient

1/tanG2- I/tan G1= k

wherek is aconstant.Thepresenceof this invariantin theopticarrayspecifiesthatthegrid lines
areequallyspaced.It canbeshownthatthisinvariantis preservedwhenthepictureis viewed
from too closeor too far.

7. Thevalueof h canbedeterminedby assumingthatthegroundplaneof thepictureis
coextensivewith thegroundplaneof therealenvironment,butsuchanassumptionmayfor some
picturesbeneitherappropriatenorperceptuallycompelling.

8. Throughoutthispaper,orientationsarespecifiedin environment-centeredterms(i.e.,rela-
tive to thefixed frameworkof theenvironment),ratherthanin viewer-centeredterms(i.e.,relative
to theobserver'slineof regard). I havediscussedthisdistinctionandits significanceat length
elsewhere(Sedgwick,1983;SedgwickandLevy, 1985).

9. Empiricalevidencethatis atleastqualitativelyconsistentwith theanalysispresentedhere
hasbeenreportedby Bartley (1951),BartleyandAdair (1959),Bengstonet al. (1980),Farber
(1972),Lumsden(1983),Purdy(1960),O. W. Smith (1958a,1958b),O. W. Smithand Gruber
(1958),andO. W. Smith, P.C. Smith, andHubbard(1958). Anecdotalsupportingobservations
arealsoreportedby MacKavey(1980)andPirenne(1970). Ontheotherhand,Rosinskiand
Farber(1980)briefly reportfailing to finddistortionswhentheframeof thedisplayis visible,and
HagenandElliott (1976)andHagenandJones(1978)reportthatadults'choiceof themost
"realisticlooking" displaywasessentiallyindependentof theiractualviewing distance.

It is importantto distinguishbetweenthepresenceof measurabledistortionsin thepercep-
tion of spatiallayoutandthedetectionof thesedistortionsby theobserver.Observers'perceptions
maycontaindistortionsof whichtheobserversthemselvesareunaware.A numberof researchers
havesuggestedthatobserversareoftennotvery sensitiveto thepresenceof suchdistortions
(Gombrich,1972;Pirenne,1970;Cutting,1986a,1986b).

10. Systematicanalysisof thisproblemisagainofferedbyLa Gournerie(1859),whosework
hasbeenput to useby Cutting(1987). Morerecentanalysesareofferedby FarberandRosinski
(1978)andRosinskiandFarber(1980),whoexplicitly basetheir secondanalysis(1980)on linear
perspectiveconstraints.I againoffer two analyses,onebasedon thegroundplaneandtheother,
following Sedgwick(1980),basedonperspectivestructure.All of theseanalysesagreein the
distortionsthattheypredict.
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11. Anecdotal reports of these distortions are common (Pirenne, 1970, 1975; Wallach, 1976,

1985). Experimental evidence that such distortions occur perceptually under some circumstances

is offered by Goldstein (1979, 1987), Rosinski et al. (1980), Rosinski and Farber (1980), and
WaUach and Marshall (1986), although all of these authors also report conditions under which the

analytically predicted distortions do not occur. Cutting (1987) has analyzed some of the data of
Goldstein (1987) in detail and has shown it to be in generally good accord with the theoretical pre-

dictions. Perkins (1973) finds some distortion from lateral viewing, but much less than this

analysis would predict.

12. An expert system that I have developed to study the interaction of multiple sources of visual

information is described elsewhere (Sedgwick, 1987a, 1987b).

13. This assumes that the perpendicular from the correct viewpoint pierces the picture plane

somewhere near the center of the pictorial display, as it usually does.

14. Kubovy (1986) is critical of many of the stimuli used by Hagen and Elliott (1976) and

Hagen and Jones (1978) in their demonstration that adults at various distances from a picture do

not choose the correct perspective as being most realistic. Perkins' (1973) demonstration of com-

pensation for lateral viewing uses such minimal stimuli that the applicability of his results to more
complex displays may reasonably be questioned. Hagen's (1976b) study, which claims to find
evidence of compensation for lateral viewing in adults, has been criticized at length on logical

grounds by Rogers (1985), who also failed to replicate Hagen's results. In the carefully controlled

study of Rosinski et al. (1980) on the effects of frame visibility on perceived surface slant with

lateral viewing, the interpretation of results is clouded by a confusion in the description of the

experiment, and possibly in the experiment itself, about the frame of reference for their observers'

judgments. Finally, Wallaeh and Marshall (1986, exp. 2) find evidence of compensation in picto-
rial shape perception from a lateral viewpoint, but their results, as they note, could be due to ordi-

nary shape constancy because their stimulus shape was nearly parallel to the picture plane.
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AND THE

The purpose of this paper is to discuss the role of geometry in determining the perception of

spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives

from Cutting's (1988) suggestion, based on his analysis of some of my data (Goldstein, 1987),

that the changes in perceived orientation that occur when pictures are viewed at an angle can be

explained in terms of geometrically produced changes in the picture's virtual space. Before dealing

with Cutting's idea, let's first consider the paper that stimulated it.

Goldstein (1987) distinguishes between three different perceptual attributes of pictures:

1. Perceived orientation. The direction a pictured object appears to point when extended out

of a picture, into the observer's space.

2. Perceived spatial layout. The perception of the layout in three-dimensional space of

objects represented in the picture.

3. Perceived projection. The perception of the projection of the picture's image on the
observer's retina.

One basis for making these distinctions is that the perception of these attributes is affected

differently by changes in the observer's viewing angle. Perceived orientation and perceived spatial

layout, the two attributes we will focus on in this paper, differ in the following way:

1. Perceived spatial layout remains relatively constant with changes in viewing angle. This

"layout constancy" is demonstrated by presenting photographs of triangular arrays of dowels like
the ones in figure 1, and asking subjects to reproduce the layout this array would have if viewed

from directly above. The results of these experiments, indicated by the general correspondence

between the shapes of the solid triangles in figure 2, indicate that changing viewing angle causes

only small changes in a subject's ability to reproduce spatial layout. This relative constancy has

also been observed for other arrays and for pictures of environmental scenes (Goldstein, 1979,
1987).

2. Perceived orientation, on the other hand, undergoes large changes with changes in

viewing angle. Figure 3 shows the average perceived orientations for four observers judging the

orientations defined by pairs of dowels BA and BC of figure 1. When the picture is viewed at an
angle of 20 ° (far to the right side of the picture plane), the relationship between the two orientations

is different than when it is viewed at 160 ° (far to the left side of the picture plane). These

differences are manifestations of the differential rotation effect--the fact that pictured objects

oriented more parallel to the picture plane rotate less in response to an observer's change in

viewing angle than do pictured objects that are oriented more perpendicular to the picture plane.
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(See Goldstein, 1979, 1987, for a more detailed graphical presentation of similar data for a number

of viewing angles).

In my paper I presented evidence that the subject's awareness of the picture plane is one of
the causes of these changes in the perceived orientation of different objects relative to one another.

Cutting (1988) has offered an alternate explanation-that perceived orientation is controlled by the

geometrical changes associated with the affine shear that accompanies changes in viewing angle.

His analysis is based on an analysis of the virtual space defined by a picture-that is, the three-
dimensional space that corresponds to the picture's geometrical array. Cutting's original analysis

was based on a formula developed by Rosinski et al. (1980), but it is also possible to use the

graphical method illustrated in the top part of figure 4 (see Cutting, 1986, p. 36, for an illustration

of the geometrical method used to construct this figure) to determine how the picture's virtual space

is affected by changes in viewing angle. This figure shows the virtual space defined by the array

in the center top of the figure, for viewing angles of 20 °, 90 °, and 160 °.

After determining the virtual space defined by my triangular array at different viewing angles,

Cutting used the orientations defined by this space to predict perceived orientations at each viewing

angle. The resulting predictions for perceived orientations fit the data well at some viewing angles
and not as well at others. Consider, for example, his prediction for a viewing angle of 160 °. We

can compare the predicted orientations shown at the top right of figure 4 to those determined

empirically by constructing a triangle based on the empirically determined perceived orientations.
Such a triangle, calculated from the data in figure 3 of Goldstein (1987) 1 and shown on the lower

right of figure 4, is oriented slightly differently than Cutting's predicted Mangle, but has the same

general shape. The fit is not, however, as good for a viewing angle of 20°; at that angle Cutting's

predicted orientations for the directions defined by B _ C and C _ A differ from those determined

empirically.

Although these differences between geometrically predicted and empirical results suggest that
geometry cannot supply the entire explanation for the changes in perceived orientation that occur

with changes in viewing angle, Cutting's model does succeed in predicting the differential rotation

effect. Geometry may, therefore, play at least some role in determining perceived orientation, and
it is this role I wish to focus on now.

Let's assume for the moment that perceived orientations are linked to the changes that occur

in virtual space with changes in viewing angle. This possible linkage between changes in virtual

space and perceived orientation becomes particularly significant when we consider that these same
changes in virtual space cause little change in the observer's perception of spatial layout. This

constancy of spatial layout occurs not only for changes in viewing angle, as illustrated by the solid

triangles in figure 2, but also for changes in viewing distance, as indicated by comparing the solid
and dashed triangles in figure 2. The solid triangles were produced by subjects viewing the array

in figure 1 from a distance of 8 in., whereas the dashed triangles were produced from a viewing

distance of 64 in. Despite this eight-fold difference in distance, which causes a large expansion of

virtual space, 2 there are only small differences between the triangles.

1The data on which these triangles are based were collected using a stimulus with the same layout as the
stimulus shown in figure 1, but the photograph of the dowels was taken from a slightly lower angle (see Goldstein,

1987, for a picture of this stimulus).
2The use of the graphical method to determine how virtual space is changed by this increase in distance

indicates that the expansion of the space caused by changing the viewing distance from 8 to 64 in. produces an
elongated triangle in which side BA is stretched to four times the length of side BC.
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What we havehere,therefore,is a situation in which largechangesin virtual spacecause
little or nochangein theperceptionof spatiallayout,but which,to theextentthatthegeometrical
hypothesisis correct, causelarge changesin perceivedorientation. This situationraisesthe
possibility that perceivedorientationmay result directly from stimulus geometry,whereasthe
perceptionof spatial layout may involve a processingstepto compensatefor the geometrical
changescausedby viewing atanangle.

This ideaof a compensationmechanismis not new. Pirenne(1970),Rosinski,et al. (1980)
andKubovy (1986)havelinked suchmechanismsto thesubject'sawarenessof thepictureplane;
however,theexactoperationof thiscompensationmechanismhasneverbeenspecified.Thefh'st
questionthat shouldbeaskedto helpelucidatethenatureof thishypotheticalmechanismis: What
stimulusmanipulationwill causea subject'sperceptionof layout to correspondto the picture's
virtual space-or,put anotherway,Whatstimulusmanipulationwill eliminatelayoutconstancy?

It is alsopossiblethatlayout constancyis theoutcome,not of acompensationmechanism,
but of thesubject'sattentionto informationin thepicturethat remainsinvariantwith changesin
virtual space.While it is easyto talk glibly aboutinvariant information,we needto identify this
informationif, in fact, it exists.

Finally,returningtoperceivedorientation,thesuggestionthatthisperceptmayresultdirectly
from stimulusgeometrycannotbethewholestory. It seemsclearthattheobserver'sawarenessof
the angleof view is also important(Goldstein,1987),althoughexactlyhow this factor interacts
with stimulusgeometryremainsto bedetermined.

Obviously, many questions remain to be answeredbefore we fully understand the
mechanismsunderlyingperceivedorientationandperceivedspatiallayout. Thesequestionsare
important,notonly becausethey suggestpossibilitiesfor futureresearchthat couldyield answers
that will greatly enhanceour understandingof picture perception, but also becausethey
acknowledgean important fact aboutpicture perception: Perceivedorientation andperceived
spatial layout areaffecteddifferently by changesin viewing angle,areprobablycontrolled by
differentmechanisms,andshould,therefore,beclearlydistinghishedfrom oneanotherin future
researchon pictureperception.
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B C

Figure 1.- Stimulus used to determine the perceived spatial layouts of figure 2 and the perceived

orientations in figure 3. In the actual photographic stimuli the dowels had horizontal black

and white stripes to clearly distinguish them from the background.

iFr_ _- ...... I I, . F� / ,
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Figure 2.- Solid triangles--average spatial layouts produced by four observers viewing the array
of rods in figure 1 from a distance of 8 in. at viewing angles of 20 °, 90 °, and 180 °. Dashed

triangles-average spatial layouts produced by the same observers from a viewing distance of
64 in. Viewing angle is the angle between the observer's line of sight and the picture plane,

with a viewing angle of 0 ° occurring when the observer is looking at the right edge of the

picture and a viewing angle of 180 °, occurring when the observer is looking at the left edge.

(See Goldstein (1987) for further details of stimulus specification and procedures.)
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C

Figure 3.- Averaged perceived orientations defined by dowels BA and BC of figure 1, when
viewed at viewing angles of 20 ° and 160 °. The picture plane is indicated by the horizontal line

and the observer's position is shown by the schematic eye. Perceived orientations are

indicated by the direction of the arrows. Note that for a viewing angle of 20 °, the orientation
of BC points behind the picture plane. This is a typical result, which has been previously

reported (Goldstein, 1979, 1987).
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My topic concerns spatial displays, and a constraint that they do not place on the use of

spatial instruments. Much of the work done in visual perception by psychologists and by com-

puter scientists has concerned displays that show the motion of rigid objects. Typically, if one

assumes that objects are rigid, one can then proceed to understand how the constant shape of the

object can be perceived (or computed) as it moves through space. Many have assumed that a

rigidity principle reigns in perception; that is, the visual system prefers to see things as rigid.

There are now ample reasons to believe, however, that a rigidity principle is not always followed.

Hochberg (1986), for example, has outlined some of the conditions under which a rigid object

ought to be seen, but is not. Some of these concern elaborations of some of the demonstrations

that Adelbert Ames provided us more than 35 years ago.

There is another condition of interest with respect to rigidity and motion perception. That

is, not only must we know about those situations in which rigidity ought to be perceived, but is
not, we also must know about those conditions in which rigidity ought not to be perceived, but is.

Here I address one of these conditions, with respect to cinema. But before discussing cinema, I

must f'n'st consider photography.

When we look at photographs or representational paintings, our eye position is not usually

fixed. A puzzle arises from this fact: Linear perspective is mathematically correct for only one

station point, or point of regard, yet almost any position generally in front of a picture will do for

object identity and layout within the picture to appear relatively undisturbed. Preservation of phe-

nomenal identity and shape of objects in slanted pictures is fortunate. Without them the utility of
pictures would be vanishingly small. Yet the efficacy of slanted pictures is unpredicted by linear

perspective theory.

This puzzle was first treated systematically by La Gournerie in1859 (see Pirerme, 1970). I

call it La Gournerie's paradox; Kubovy (1986) has called it the robustness of perspective. The
paradox occurs in two forms: The first concerns viewing pictures either nearer or farther than the

proper station point; the second and more dramatic concerns viewing pictures from the side. Both

are shown in the top panels of figure 1.

To consider either distortion one must reconstruct, as La Gournerie did, the geometry of

pictured (or virtual space) behind the picture plane. The premise for doing so is that the image

plane is unmoving, but invisible, and that observers look through it into pictured space to make
sense out of what is depicted. Invisibility is, in many cases, obviously a very strong, if not false,

assumption, but it yields interesting results. Possible changes in viewing position are along the z

axis, orthogonal to the picture plane, and along the x or y axes, parallel to it. Both generate affine

transformations in depth in all xz planes of virtual space. Observer movement along x or y axes
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alsogeneratesperspectivetransformationsof theimage,but thesewill notbeconsideredhere
(Cutting 1986a,1986b).

In theupperleft panel,four pointsareprojectedontotheimageplaneasmightbeseenin a
largephotographtakenwith a shortlens. Whentheobservermovescloserto the image,asin the
uppermiddlepanel,theprojectedpointsmuststayin thesamephysicallocationsin thephoto.
Thus,thegeometryof whatlies behindmustchange.Noticethatthedistancebetweenfront and
backpairsof pointsof this four-pointobjectis compressed,acollapseof depthlike thatwhen
lookingthroughatelephotolens.All changes in z axis location of the observer create compression

or expansion of the object in virtual space. When an observer moves to the side, as seen in the

upper right panel, points in virtual space must shift over, and do so by different amounts. Such

shifts are due to affine shear. All viewpoints of a picture yield additive combinations of these two

aff'me effects-compression (or expansion) and shear.

Such effects are compounded when viewing a motion sequence, as shown in the lower

panels of figure 1. In particular, an otherwise rigid object should appear to hinge and become
nonrigid over the course of several frames for a viewer seated to the side. Theoretically, the

problem this poses for the cinematic viewer is enormous--every viewer in a cineauditorium has an

eye position different than the projector and camera position, and thus, by the rules of perspective,

no moving object should ever appear rigid. This is, I claim, the fundamental problem of the per-
ception of film and television.

Most explanations for the perception of pictures at a slant are in sympathy with Helmholtz.

Pirenne (1970, p. 99), for example, suggested that "an unconscious intuitive process of psycho-

logical compensation takes place, which restores the correct view when the picture is looked at
from the wrong position." Pirenne's unconscious inference appears to unpack the deformations

through some process akin to mental rotation (Shepard & Cooper, 1982). According to this view,

the mind detransforms the distortions in pictured space so that things may be seen properly, and

although Pirenne didn't discuss f'dm, it might hold equally for film seen from the front row, side

aisle. The force of my presentation is to show that this view is not necessary in the perception of

slanted cinema. But In'st consider how this account might proceed.

Pirenne and others have suggested at least three sources of image surface information that

might be used to "correct" slanted images--(1) the edges of the screen, which yield a trapezoidal

frame of reference; (2) binocular disparities, which grade across the slanted surface; and (3) pro-

jection surface information such as texture and specularities. Since I am interested in none of

these, I removed them from my displays through a double projection scheme, as shown in figure

2. If one considers the situation of viewing slanted cinema, one has the real, slanted surface and

one can measure a cross section of that optic array from it. This would be an imaginary projection

surface. Once considered this way, one can reverse the two, placing the real surface in front of the
imaginary, and this is what I did.

In this manner, although the display frame was always rectangular for the observer, the

shapes of rotating stimuli were like those seen from the side, with the right-edge elements in each

frame longer than the left-edge ones and with the z axis compressed. This simulation yields a per-
spective transformation of the image screen, and a nonperspective transformation of the stimulus

behind it in virtual space. I presented viewers with computer-generated, rotating, rectangular

solids. Two factors are relevant to this discussion. (For a more complete analysis see Cutting,
1987.)

17-2



First,half thesolidspresented were rigid, half nonrigid. Nonrigid solids underwent two

kinds of transformation during rotation--one affine, compressing and expanding the solid like an

accordion along one of its axes orthogonal to the axis of rotation during rotation, and one non-
affine, with a comer of the solid moving through the same excursion. Deformations were sinu-

soidal and were accomplished within one rotation of the stimulus. It was relatively easy to see the

large excursions as making the solid nonrigid; it was more difficult in smaller excursions. This
nonaffine deformation was much easier to see than the affine deformation, but there were no

interactions involving types of nonrigidity, so here I will collapse across them (see Cutting, 1987,

for their separate discussion).

Second, stimuli were presented with cinematic viewpoint varied; in Experiment 1, half

were projected as if viewed from the correct station point, half as if seen from the side, with the

angle between imaginary and real projections surfaces set at 23 ° . The latter condition allows
investigation of La Goumerie's paradox, and compounds the nonrigid deformations of the stim-

ulus in pictorial space with an additional perspective transformation of the image.

Viewers looked at many different tokens of all stimuli, and used a bipolar graded scale of

rigidity and confidence, from 1 to 9-with 1 indicating high confidence in nonrigidity, 9 high

confidence in rigidity, and 5 indicating no confidence either way.

Figure 3 shows the results of the fu'st experiment for rigid and nonrigid stimuli, at both 90 °
and simulated 67 ° viewing angles. Two effects are clear. First, rigid stimuli were seen as equally

rigid regardless of simulated viewpoint in front of the screen, and second, nonrigid stimuli were

seen as equally nonrigid regardless of simulated viewpoint.

The lack of difference in the slanted and unslanted simulated viewing conditions is striking,

but it could be due to the fact that the screen slant was relatively slight. Experiment 2, then, intro-

duced a third viewing condition, a steeper angle-45 °. A fourth condition was also introduced. Its

impetus came from structure-from-motion algorithms in machine vision research. Several people
suggested to me that screen slant could be another parameter in rigidity-finding algorithms and that

only a few more frames or points might be needed to specify slant. To test for this idea, I intro-
duced a variable screen-slant condition, where the simulated slant of the screen oscillated between

80 ° and 55 °, with a mean of 67 °. It seemed highly unlikely that an algorithm could easily solve for

both rigidity and a dynamically changing projection surface.

This time stimuli were generated in near-parallel and polar perspective. Again, stimuli

could be rigid or nonrigid. Selected results for the nonrigid stimuli are shown in figure 4, and
show two striking effects. First, the variable 67 ° screen slant condition was not different from the

nonvarying condition, and the lack of difference would seem to be embarrassing for any structure-

through-motion approach to the perception of these stimuli that includes screen slant as a variable
to be solved for. Second, if simulated screen slant is great enough, all stimuli begin to look

nonrigid.

A more interesting result is an interaction concerning near-parallel and polar projected stim-

uli, as shown in figure 5, with the two 67 ° conditions collapsed, and all rigid and nonrigid trials

collapsed. The near-parallel projected stimuli show no difference in perceived rigidity from any

angle that they are viewed; the more polar projected stimuli, on the other hand, show a sharp

decrease in perceived nonrigidity as the angle or regard increases.
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This latter effect adds substance to other results in the literature. For example, Hagen and
Elliott (1976) found what they called a "zoom effect"---the general preference for static stimuli seen

is more parallel than polar projection. Here, in cinematic displays, stimuli that are near-parallel-

projected are seen as more rigid from more places in a cineauditorium.

In conclusion, let us be reminded that photographs and cinema arc visual displays that are

also powerful forms of art. Their efficacy, in part, stems from the fact that, although viewpoint is

constrained when composing them, it is not nearly so constrained when viewing them. The reason
that viewpoint is relatively unconstrained, I claim, is not that viewers "take into account" the slant

of the screen, but that the visual system does not seem to compute the relatively small distortions in

the projections, at least for certain stimuli that are projected in a near-parallel fashion.

It is obvious that our visual system did not evolve to watch movies or look at photographs.

Thus, what photographs and movies present to us must be allowed in the rule-governed system

under which vision evolved. Slanted photographs and cinema present an interesting case where
the rules are systematically broken, but broken in a way that is largely inconsequential to vision.

Machine-vision algorithms, to be applicable to human vision, should show the same types of
tolerances.

But with regard to the use of camera lens in movies, it becomes quite clear why long
lenses-those that are telephoto and nearly telephoto-are so popular and useful. First, and known

for nearly a century, standard lenses tend to make people look like they have bulbous noses. Sec-

ond, and corroborated by my results, long lenses provide a more nearly parallel projection of
objects, and the distortions seen in these objects when a viewer looks at a slanted screen axe

significantly diminished. This enhances their efficacy considerably, despite the fact that it

introduces the nonnatural situation of collapsing the apparent depth of a scene.
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Figure 1. Reconstructive geometry and images. The upper panels show the reconstruction of four

pillars in depth. Consider the left-most panel a representation of the real depth relations

projected onto the image plane. If that plane is now a photograph, the pillars are fixed in

position on the image plane. Thus, when an observer moves toward the plane, depth must
be compressed, as in the upper middle panel. When the viewer moves to the side, all

pillars slide over by differing amounts. The bottom panels show reconstructions of a

moving square across three frames, from two viewpoints. Notice that the reconstruction

for Observer 1 is rigid, but that that for Observer 2 is not (from Cutting, 1986a).
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Figure 2. Arrangements of real and simulated projection surfaces that can remove image informa-

tion from objects projected onto slanted screens (from Cutting, 1987).
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Figure 3. Selected results from Experiment 1. 90 ° and 67 ° are the two viewing conditions of inter-

est, where 67 ° is the simulated screen slant as indicated in figure 2. R = rigid stimuli,
N = nonrigid stimuli.
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Figure 4. Selected results from Experiment 2. The added conditions are simulated screen slants of

45 °, and one of variable slant (between 80 ° and 55°), averaging 67 °. R = rigid stimuli,

N = nonrigid stimuli.
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Figure 5. Another description of the results of Experiment 2, parsed according to projection.
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1. INTRODUCTION

The principal function of vision is to measure the environment. As demonstrated by the

coordination of motor actions with the positions and trajectories of moving objects in cluttered

environments and by the rapid recognition of solid objects in varying contexts from changing per-

spectives, vision provides real-time information about the geometrical structure and location of

environmental objects and events.

Information about the geometrical structure of scenes, objects, and motions may be visually

acquired not only by the exploration of natural environments, but also from artificial, human-

designed displays. Photographs, drawings, movies, computer graphics, and other such artificial

2-D displays are widely and effectively used tools for communicating information about spatial
structures. Understanding the basis for the effectiveness of such tools poses a special theoretical

challenge, because the trigonometric mapping from the 3-D structures and motions portrayed in

these displays to the optical patterns on the observer's retinae differs from the perspective projec-
tions that normally hold for vision in natural environments. Cutting (1987) has recently discussed

the theoretical difficulties posed by this discrepancy between the projective geometry of movies
versus that of natural vision, and he has also provided experimental demonstrations of the abilities

of humans to perceive 3-D structure in movies viewed "from the front row side aisle."

The purpose of this paper is to examine the geometric information provided by 2-D spatial

displays. We propose that the geometry of this information is best understood not within the

traditional framework of perspective trigonometry, but in terms of the structure of qualitative rela-

tions defined by congruences among intrinsic geometric relations in images of surfaces. The

mathematical details of this theory of the geometry of vision are presented elsewhere (Lappin, in

press); the present paper outlines the basic concepts of this geometrical theory.

lWork on this paper and on related experimental and theoretical research was supported in part by a Small
Business Innovative Research Grant from NASA to T. D. Wason, by NIH Grant EY-05926 to J. S. Lappin, and by
the University Research in Residence Program of the Air Force Office of Scientific Research which enabled several
extended visits by Lappin to Wright-Patterson Air Force Base. The mathematical ideas outlined in this paper have
benefitted significantly from discussions with Jan Koenderink and Andrea van Doom, State University of Utrecht,
The Netherlands, and especially with John G. Ratcliffe, Dept. of Mathematics at Vanderbilt.

18-1



Traditionally, the structure of space--both the 3-D space of the environment and the 2-D space
of the image-has been regarded as defined a priori, independently of the objects and motions con-

mined within it. Indeed, the geometric structure of objects and motions is typically described by

reference to extrinsic standards that define parallel and perpendicular directions and quantify rela-

tive magnitudes of distance extrinsic to the objects themselves.

When described in terms of this extrinsic framework, however, the geometry of vision is

quite complicated: Metric 2 relations in the 2-D image plane cannot be isomorphic with metric rela-

tions in the 3-D environment; the perspective projection from 3-D spatial structures in the environ-

ment onto the 2-D image plane does not have a well-defined inverse. Therefore, the recovery of

information about the geometric structures and locations of the environmental objects has often

been thought to require supplementary information about the perspective position of the observer

or about the structure and location of the objects. The 2-D optical images alone have seemed
insufficient.

But the assumption that vision begins with an abstract structure of space as a prior standard

for describing environmental objects begs the question. The basic problem of vision is to f'md a

measurement structure for representing the spatial characteristics of observed scenes, objects, and
events. Such a measurement structure is generally not given beforehand, but must be discovered

in the organization of the empirical observations themselves.

2. INTRINSIC GEOMETRY OF SURFACES AND IMAGES

When described in terms of the intrinsic geometry of surfaces, the geometry of vision
becomes much simpler. In the first place, the mapping of a visible region of an environmental

surface onto its optical image is a mapping from one 2-D manifold onto another. The derivatives
and singularities of the surface-its slopes, peaks and valleys, inflections, saddlepoints, and

occluding edges-are isomorphic with the derivatives and singularities of the image. This is true for

images described by gradients of texture, motion parallax, or stereoscopic disparity (Koenderink
and van Doom, 1975, 1976a,b,c, 1977). Although the isomorphism does not hold for images

described by luminance gradients, partly because of the additional influence of the direction of

illumination, it is still true that the intrinsic surface structure (in particular, the parabolic lines,

which are inflections of curvature that separate regions of convexity and concavity) is systemati-

cally related to the differential structure of the image (Koenderink and van Doom, 1980). Because
the differential structures of the two manifolds are essentially isomorphic with one another, the

ordinal topography of the visible region of an environmental surface is fully described and

recoverable by its optical image.

Furthermore, the specific mapping between curves and forms on the environmental surface

and their corresponding images on an observer's retina may be locally described simply by a linear

2The term metric is used in a conventional mathematical sense, referring in this context to measures of
distance over a potentially curved surface. A relation m(a,b) between two elements a and b is said to be a metric
relation if it satisfies the following axioms for all elements a, b, and c:

posidvity: m(a,b) >__0
symmetry: m(a,b) = m(b,a)
reflexivity: m(a,a) = 0
triangle inequality: m(a,c) <__m(a,b) + m(b,c).
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coordinate transformation between the derivatives on the two manifolds. This linear approximation

holds for "inf'mitely small" surface patches that may be locally approximated by a tangent plane at

that location. This linear mapping of the surface onto its image also has a well-def'med inverse.

Accordingly, the local structure of the surface may be obtained from the local structure of its image

by a linear coordinate transformation.

These simple relationships between the surface and its image involve the derivatives on the
two manifolds. The linear transformation that best describes the relationship between these two

manifolds at any given point is given by the partial derivatives of the two coordinate systems.
Thus, if 0 2 represents the 2-D manifold of the object surface, and if R 2 represents the 2-D

manifold corresponding to the observer's retina, then the linear differential map v: 0 2 _ R 2 is

specified by the following Jacobian matrix of partial derivatives:

Suppose that [dO] = [do 1, do 2] is a 2x 1 column vector that specifies an infinitesimal displacement
on the surface in terms of two intrinsic coordinates on the object surface, and suppose that

[dR] = [dr 1, dr 2] is a corresponding description of the image of this vector in terms of the intrin-

sic coordinates of the retina. Then the transformation between these two coordinate systems pro-

duced by the optical projection from the object to its image on the retina is given by the linear

equation

[dR] = V[dO]

and the inverse map is given by

[dO] = V-1 [dR]

where V is the Jacobian matrix given above. (The form of this equation is independent of the
specific coordinate systems used to specify positions on the two manifolds. The coordinates need

not intersect at right angles nor even be straight lines; they need only be differentiable and to pro-

vide a unique specification of each position on the manifold. The generality of this representation

seems especially relevant to vision, where no specific coordinate system can be assumed before-
hand for any particular environmental surface. 3 ) The important point is that the local structure of

the retinal image of a given surface is described by this Jacobian matrix of partial derivatives, V.
The entries in this matrix vary as a function of position on the surface, with variations in the values

of these entries reflecting variations in the orientation and curvature of the surface.

The same approach can also be used to describe the relationships with a third 2-D manifold
associated, for example, with an intervening display image such as a movie or photograph. Sup-

pose that 12 represents the manifold of such an intervening image, that a: 0 2 --->I2 represents the

3For concreteness, we may assume that the coordinates reflect the spatial arrangement of the gradients and
singularities of the surface--e.g., tending to run parallel and perpendicular to the gradients of curvature of the surface
and to the boundary contours, corners, and parabolic lines (which separate structurally distinct regions). We need not
assume that these coordinates have specific numerical values, only that they are differentiable and uniquely label
every location on the surface.
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differentialmapbetweenthesetwo manifolds,andthat b: 12 --) R 2 is the visual map from the dis-

play image onto the retinal manifold. Then, using the chain rule, the two successive maps can be
combined by a composition of the two functions, v = (b. a): 0 2 -_ R 2. Similarly, the coordinate

transformation corresponding to this chain would be given by a linear equation of the following
form:

[dR] = BA[dO],

where the matrix product BA = V again provides a linear coordinate transformation functionally
equivalent to the previous construction.

Representation of the metric structure of the surface requires an embedding of the 2-D mani-

fold of the surface or its image into the 3-D manifold of Euclidean 3-space, E 3. Suppose that
[dX] = [dx 1, dx 2, dx 3] is a 3xl column vector giving the three orthogonal cartesian coordinates

of an infinitesimal displacement on the object surface. Then the perspective coordinate embedding
of the image of the surface into E 3, p: R z --4 E 3, is given by a linear coordinate transformation of

the following form:

[dX] = PV[dO]

where P is a 3x2 matrix of partial derivatives, P = [Oxk/_ri], with k = 1,2,3 and i = 1,2.

Measures of metric relations require a quadratic expression similar to the Pythagorean formula for
distance in E3. The metric tensor that provides the measure of distance on the surface is obtained

by substituting from the above equation for the vector [dX] in the Pythagorean formula:

ds 2 = [dX] T [dX]

= [PV[d0]] T PV[d0]

= [d0]T V T pT PV[d0]

= [d0] T V T P* V[d0],

where P* = pTp is a symmetric 2X2 maWix with quadratic entries of the form

p* = [Y. (_xk/_ri)(3xk/_rJ)].
k

Thus, the entries in this matrix provide a measure of squared distance on the object surface at a

particular position on the retina corresponding to the image of the surface. The length of any arbi-

trary curve on the surface is obtained by integrating the quantifies ds defined in the preceding
equation at each position along the curve.

The three independent parameters of the matrix P* are not given directly by a single station-

ary image of an isolated local surface patch. In certain special cases these perspective parameters

and therefore the metric structure of the local surface patch are determined, up to a scalar, simply

by the motion of the local patch. More generally, however, these perspective parameters must be

derived from more global constraints on the image structure associated with the observer's position
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and motion within the 3-D environment. In general, the perspective embedding of the image into

E 3 is revealed by actual or implied motions of objects within the space.

3. METRIC STRUCTURE FROM CONGRUENCE

Although geometric relations are often described in terms of extrinsic coordinate systems in
which directions and distances are defined a priori, it is important in many applications to derive

the structure of space from more fundamental qualitative relationships among the objects and

events contained within it. This was the case, for example, in the development of relativistic

physics, where the symmetries of observations associated with the velocity of light and with grav-
itation were used to construct spaces in which the lawful relations among observed variables could

be expressed in simpler and more general form (Einstein et al. 1923, 1952; Misner, Thorne, and

Wheeler, 1973). The same strategy has also been employed in formulating the theoretical founda-

tions of measurement (Krantz et al., 1971; Luce, 1978; Luce and Narens, 1983). That is, sym-

metries of qualitative relations under various physical operations and under varying conditions of

observation may often be used as a foundation for quantitative equations that describe empirical _
laws of nature.

Analogously, the geometry of vision may also rest upon the symmewies of intrinsic qualita-

tive relations in the spatio-temporal optical images rather than on the prior metric structure of an

extrinsic coordinate system. Because metric relations in the 3-D environment are not isomorphic

with those in the 2-D image, and because the optical projections of environmental objects onto the

retinae change with the perspective positions of the displays and observers, the extrinsic frame-

work of space is neither constant nor readily accessible to vision. Instead, we hypothesize, the

metric structure of environmental objects and spaces may be induced from the isometrics of mov-

ing objects.

This conception of the geometry of vision is a continuation of ideas developed by Gibson

(1950, 1957) about the importance of the concepts of invariance and transformations for perception

(Lombardo, 1987). Gibson's (1950) conception of the visual information provided by such
"higher order variables" as a texture density gradient was based on the idea that gradients of

repeated structural relations specified the projective transformation of a surface onto an image and

also specified an inlrinsic scaling of the 3-D space in which the surface texture was homogeneous.

The same conception was subsequently expanded (e.g., Gibson, 1957) to emphasize the informa-

tion provided by the continuous transformations of optical flow produced by moving objects and

moving observers. These deformations of the optical images were believed to enable the percep-

tion of both the structural invariants and the projective transformations associated with the motions
of objects and observers in 3-D space.

The essential ideas underlying this conception of geometry were described by the mathemati-

cian Killing (1892) 4 :

Every object covers a space at every time. The space covered by one object

cannot simultaneously be covered by another object.

4We are grateful to Jan Koenderink for bringing this paper to our attention and to Bernd Rossa for translating
the paper from the original German.
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Every object can be moved. If an object covers the space of a second object at
any time, then the first object can cover any space covered by the second object at any
(other) time.

Every space (object) can be partitioned. Each part of a space (object) is again a

space. If A is a part of B and B is a part of C, then A is a part of C, where A,

B, and C may be either spaces or objects. [p. 128]

These three principles, which are the first of eight principles from which Killing derives a general

theory of geometry, provide qualitative criteria for defining the equality or congruence of spaces

and objects: Two spaces are congruent if and only if they can be covered by the same object. Two

objects are congruent if and only if they can cover the same space. Thus, objects and spaces con-

stitute mutually interdependent relational structures. The metric structure of both may be derived

from elementary qualitative properties of differentiability and congruence under motion. (By defi-
nition, "motions" are isometric transformation groups.) (Also see Weyl, 1952, and

Guggenheimer, 1963, Sect. 11-2.)

This conception of form and space provides a basis for understanding how visual informa-

tion about the metric structure and dimensionality of objects and spaces may be gained from

"motions" or transformations which bring objects at one position in space into congruence with

those at other positions. The metric equality of neighboring spaces successively occupied by the
same object and the equality of separate parts of an object which successively occupy the same

space may be determined from the motions of objects. Accordingly, the dimensionality of visible

spaces and objects need not be restricted to the two coordinate dimensions of the image. Rather,
the dimensionality may be associated with the number of parameters needed to bring an object at
one location in space into congruence with an object at another location.

In certain special cases the metric structure of a given surface patch may be locally determined

(up to a scalar) by its moving images, independent of global properties of the retinal image as a

whole. If the trajectory of the moving patch is also a surface in space-time with constant curvature

equal to that of the object patch, then of course the metric tensor for this spatio-temporal surface

remains constant over the surface. Motion of the object patch from one region of the spatio-
temporal surface to another does not change the mapping of the surface onto the retina, and the

contravariant tensor coefficients for this projective mapping of the object patch and its trajectory

onto the retina vary only as one-parameter functions of time. Accordingly, the perspective param-
eters for embedding the retinal images of this surface into E 3 also vary as one-parameter functions

of time or of retinal position (which are correlated in this case). The simplicity of these relation-

ships between the differential structure of the object surface, its trajectory in space-time, and the
retinal images of these surfaces involves sufficiently few unknown perspective parameters that

these are determined by the invariance of the metric tensor of the surface patch under motion. That

is, suppose that Vo and Po are the Jacobian matrices for the visual and perspective coordinate

transformations, respectively, for an initial retinal image of the surface patch, and suppose that Vt
and Pt are the corresponding matrices for a second retinal image of the same surface patch follow-

ing a one-parameter motion onto another position along its constant-curvature trajectory. The

equivalence of the geometric structure of the two retinal images can be expressed by the equation

T _

VTop*Vo = Vt Pt Vt
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where Pt = m(Po) is a one-parameter transformation of Po. This matrix equation involves four

independent linear equations in four unknowns-the three independent perspective parameters of
Po and the transformation of these by the parameter t.

Specific examples of this special case include a sphere that rotates around an axis (different

from the direction of gaze) through its center (e.g., Lappin, Doner, and Kottas, 1980; Doner,

Lappin, and Perfetto, 1984) and planar patterns that rotate within the same plane (Lappin and

Fuqua, 1983) tilted with respect to the retinal image. In both of these cases the time-varying set of

positions of the surface patch form a surface of revolution in space-time generated by a one-

parameter transformation group (the magnitude of the rotation). In general, the metric tensor for

the images of the moving surface patch remains invariant under the motion (i.e., its Lie derivative

is zero) if and only if the vector field of this group of isometries (the "Killing vector") is a one-

parameter group that generates a surface of revolution (Guggenheimer, 1963, pp. 272-273).
Thus, because the moving object forms a surface whose images are generated by a one-parameter

transformation, the perspective parameters for embedding this spatio-temporal surface into E 3 are

determined up to a scalar by the invariant metric structure of the given surface patch. Indeed, the

experimental results of Lappin, Doner, and Kottas (1980) and Doner, Lappin, and Perfetto

(1984)-for the perceived shape of a random-dot sphere rotating about a vertical axis through its

center-and of Lappin Fuqua (1983) for the perceived inter-point distances among three collinear

points rotating in a plane-demonstrated just this invariance of visually perceived metric structure

under motion even though the optical displays contained unnaturally exaggerated amounts of polar

projection.

In general, however, the metric structure of moving objects cannot be recovered from only

local properties of their retinal images. Instead, the perspective parameters of the projection from

E 3 onto the retina must be recovered more global constraints on the images. Perspective projection

from E 3 onto a plane produces a hyperbolic geometry in the plane, where mutually parallel lines

converge toward a common vanishing point and all sets of parallel lines converge toward a com-

mon horizon line. The position of this horizon line in the visual field is equal to the observer's

eye-height. Accordingly, all lines parallel to the observer's motion through the 3-D environment

converge toward a common vanishing point on the horizon that specifies the observer's momentary
position and trajectory through the visible environment. The images of such parallel lines in E 3 are

generated by the retinal image trajectories of features of stationary environmental objects as the
observer moves through the environment. Thus, the location of this horizon line and of such van-

ishing points constitute parameters that characterize the given hyperbolic space and its relation to
E 3. Like Euclidean space, hyperbolic space is also characterized by congruence and isometry of

form under motion. Thus, congruence relations among visible forms must specify this global per-

spective embedding of the retinal image into E 3. Although we have not yet completed the mathe-

matical analysis of this situation, the following illustrations may help to convey the rationale for
this conception of the geometry of vision.

4. CONGRUENCES IN IMAGES

The potential for constructing spaces from congruences among imaged forms has been won-

derfully illustrated by M. C. Escher. For example, he has often used translational symmmetry of a

replicated form to define a 2-D plane. Both the metric structure of this space and also its 3-D ori-

entation parallel to the image plane are specified by the translational symmetry. The elementary
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componentform is also defined by its recursion in the image rather than by the familiarity of the
form itself.

Symmetries in 3-D Euclidean space are exhibited in figure 1, where the congruence of swan-

like component forms is obtained by translations and rotations in a 3-D space. The 3-D metric

structure of the space is implied by the congruence of the recurring forms in separate regions of the

space. The perspective mapping of this space onto the 2-D image plane is also induced by this

congruence of the component forms. Thus, the perspective trigonometry is derived from the con-
gruence; the fundamental property is the congruence rather than the trigonometry.

In the preceding example, congruence is defined among stationary and concurrent forms.

The "motion" that brings a form in one location into congruence with a form in another location is

abstract, rather than an actual trajectory in space-time. If one generalizes the concept of an image

from a stationary 2-D spatial array to a space-time volume in which the spatial structures are

extended in time, then the same principle of congruence illustrated in Escher's art can be applied to

the specification of spaces by the motions of single forms.

The schematic diagram in figure 2 illustrates three conceptually different types of congruence
in images. Figure 2B is like that in the Escher print, where the image is a stationary 2-D pattern in

which a single cube-like structure is recursively positioned at a sequence of neighboring spatial

positions. The 3-dimensionality of the space is induced by the continuous linear change in the 2-D

lengths of the contours of the cube as a function of its position in the image plane. This linear
relation between 2-D length and position corresponds to a particular perspective mapping of 3-D

space onto the image plane. Thus, the continuous linear relation among neighboring regions of the

image of a single connected surface specifies the perspective mapping of a 3-D space onto the 2-D

image.

In figure 2A the same perspective mapping is defined by a temporal sequence of spatial

images as the cube is translated through space from position P1 to position Pn- The linear trans-

formation that corresponds to the perspective projection of a plane slanted in depth is now specified

by a function in space-time, though the geometric relation between the image and the depicted

space obviously is essentially the same as in figure 3B. In both cases, relationships among neigh-

boring image regions correspond to relationships among neighboring regions of a smooth surface.

The perspective relation between the image and the 3-D space in which the surfaces, objects, and
motions reside is specified by the linear relationship between the lengths of the contours and their

positions in the image.

Figure 2C illustrates a slightly different case in which the structure of a space is specified by

congruences among simultaneous motions of separate forms at separate locations in the image, as
if the forms were connected and moved in 3-D space. This situation might be produced, for

example, by motions of the observer or image plane (e.g., a movie or video camera) within a 3-D

environment. In this example two cubes, at positions P1 and Pn in 3-D space, are simultaneously

displaced in a sequence of four successive translations. The perspective mapping from the 3-D
space in which these events occur onto the 2-D image of the events may be specified by the func-

tional relation between the magnitudes of the velocities and their locations in the image plane.

Although the forms at positions PI and Pn in this particular illustration are both cubes that are

potentially congruent under the same transformations that would bring the motions of the two

cubes into congruence, this spatial congruence is not necessary and provides in this case an addi-
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tionalredundantspecificationof theperspectivetransformationof the3-D spaceontothe2-D
image.

Thegeometricrelationbetweentheconcurrentmotionsof just two formsasin figure 2C is
notgenerallysufficientto specifytheperspectivetransformationthathasyieldedtheobserved
spatio-temporalimage. By thefundamentaltheoremof planeperspectivity(Delone,1963),the
perspectivemappingof four pointsin generalposition(wherenothreepointsarecollinear)in one
imageplaneontoacorrespondingsetof four pointsin anotherimageplaneis necessaryandsuffi-
cientto ensurethatall of theremainingpointsarein isometriccorrespondencein thetwoplanes.
Thus,for asetof four or morepointsin a singleplane,theconcurrentmotionsof the imagesof
thesepointsin anotherplanearein principlesufficientto specifytheperspectivetransformation
betweenthesetwo planesandto specifythemetricstructureof thespatialrelationswithin these
planarimages.

Thisgeometricrelationshipendowsspatialaswell asmovingimageswith considerable
capacityfor carryinginformationaboutthegeometricstructureof theenvironmentalsurfaces
depictedin theimages:Thegeometricstructureof aninfinitesimallysmallpatchonanyarbitrarily
curvedbut smoothsurfacemaybelocallyapproximatedby atangentplaneatthatlocation,andthe
perspectivemappingof thistangentplaneontoanimageplanemaybedescribedby alinear
coordinatetransformation.Theparametersof this lineartransformationvary with therelative3-D
orientation(thedirectionof tilt andthemagnitudeof slant)anddistanceof theenvironmentalsur-
facein relationto the imageplane.Theperspectiveparameterswhichembedtheimageof thesur-
faceinto E3 andtherebydeterminethemetricstructureof thesurfacearethoseparametersthatwill
yield theself-congruenceof thesameobjectatdifferentlocationswithin thedepictedscene.

5. EXPERIMENTAL EVIDENCE

In addition to the evidence provided by the illustrations, by everyday visual experience in

viewing both natural environments and artificial spatial displays, and by the capabilities of moving

observers to coordinate their actions with the identities, positions, and trajectories of environmental
objects, the hypothesis that perceived geometric structure derives from the congruences of moving

and movable objects is also supported by experimental evidence. A vast amount of experimental
evidence appears consistent with this hypothesis, but we mention here only a few experiments that

seem to provide more direct support for this hypothesis.

One of the relevant investigations is that of Cutting (1987). Judgments of the apparent rigid-

ity of rotating rectangular solids were evaluated in a variety of experimental display conditions,

including both rigidly and nonrigidly rotated figures and displays that simulated varying degrees of

polar versus parallel projection, and varying degrees of slant of the projection screen relative to the

direction of the perspective convergence point. He found good discrimination of rigid versus non-
rigid figures in displays with approximately parallel projection, essentially independent of the

degree of simulated screen slant (90 °, 67 °, 45 °, or varying between 80 ° and 55°), even when the

simulated slant was varied sinusoidally during a given trial. Although the figures appeared to

move nonrigidly in conditions with polar projection onto screens slanted at 45 °, the results gener-

ally demonstrated the robustness of perceived structural rigidity under at least moderate screen

slants and moderate viewing distances. These results challenge many conventional assumptions

about the geometrical information for perceiving the spatial structure of form. Cutting concludes
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thattheseresultsprobablyreflecttheinsensitivityof vision to the distortions produced by optical
projections, but this interpretation rests upon assumptions about the definition of visual space by

the metric structure of 2-D display screens and retinae. An alternative interpretation is that vision is

very sensitive to spatial relations defined in another way-by the congruence of form under per-

spective transformations.

Evidence that vision is indeed very sensitive to the spatial structure of moving forms and that

this structure is associated with invariant spatial relations in depth rather than the projected 2-D

positions is provided by experiments reported previously by Lappin and Fuqua (1983). They

evaluated observers' acuities in detecting a displacement (a stationary offset in 3-D space) of a
point from the 3-D center of an imaginary line segment def'med by moving patterns of three

collinear points. The points were rotated in computer-controlled CRT displays as if around an axis

slanted in depth by amounts varying between trials from 0 ° (no slant) to 60 °. Very small displace-

ments were accurately detected--displacements greater than 1% of the 3D distance between the two

outer points could be detected above chance, and displacements of 4% were detected at approxi-

mately 90% accuracy. The essential 3-dimensionality of the perceived spatial relations was

demonstrated by the following findings: (1) Detection accuracy was independent of either the

magnitude or variability of the slant of the axis of rotation in depth. (2) Distance-like measures of
the detection accuracy (similar to the signal detectability measure d') were linearly related to the

physical distance of the displacement in 3-D space, with discriminability being proportional to

physical displacement distances above about 1%. (3) The accuracy for detecting any given dis-

placement was the same in displays with parallel and with polar perspective, although in the latter

displays points centered in 3-D depth were not centered in the projected 2-D images. The differ-

ences in spatial positions between the parallel and polar displays were visually resolvable, how-
ever. (4) When the task required detection of displacements from the projected 2-D centers of the

line segments in displays with polar projections, accuracies were not significantly above chance.

The subjective appearance of the latter displays was that the three points were still seen as rotating

in depth, but the middle point appeared neither centered nor rigidly attached to the two outer points.

Thus, these findings suggest that vision may often be unaffected by the 2-D optical "distor-

tions" in cinema not merely because these spatial differences cannot be resolved by vision, but

because they do not constitute the geometrical information for perceiving the spatial structure of

moving patterns. Apparently, perceived spatial structure derives from congruences of form under
perspective transformations.

Evidence about the role of such congruences in stereoscopic form perception has been pro-

vided by recent experiments described by Lappin (in preparation). The purpose of these experi-

ments was to determine whether the stereoscopic perception of 3-D structure might be shaped by

the congruences of form associated with motion in depth, rather than by the binocular disparities as
such. The experiments were motivated by the theoretically challenging fact that for any given

magnitude of binocular disparity between the horizontal separations of a pair of points in each eye,

the associated separation in depth increases rapidly and nonlinearly with the viewing distance from

the observer to the points in question: How then is the stereoscopic perception of form and depth

calibrated for variations in viewing distance? Does this require "interpretations" of retinal dispari-

ties based on extra-retinal information about the viewing distance? Alternatively, might the per-

ceived geometric structure of surfaces in depth be based on the invariance of the intrinsic geometric

structure of the surface under the perspective transformations associated with stereoscopic dispar-

ities and with motions in depth? The theoretical problem is related to those in understanding the

apparent "paradoxes" of cinema.
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In oneof theseexperiments,observerswerepresentedwith twovery slightlydifferent
ellipses,in whichtheverticalaxiswaseither3%greateror lessthanthelengthof thehorizontal
axis. Theseellipsesweredisplayedasif in aplaneslantedin depthby either50° or 60° varying

randomly from one trial to the next. Thus, the projected forms were always elliptical, depending

on the magnitude of the slant as well as on the shape of the ellipse as measured in its own plane in

depth. Stereoscopic information about the shapes and slants of these patterns was also manipu-

lated by random variations in the magnitude of the disparities with which the forms were dis-

played, using disparities that were appropriate for either one-half or one-quarter of the actual

viewing distance at which the patterns were seen. Thus, there were eight alternative stimulus pat-

terns which randomly varied between trials.

There were four main experimental conditions-in which the forms were either rotated in

depth or were stationary, and in which the experimental task was either shape-discrimination
between the two alternative ellipses or disparity-discrimination between the two alternative dispar-

ity values. If stereoscopic information about 3-D structure is scaled by the congruences of moving

forms, then shape discrimination should be accurate when the forms were rotated in depth, inde-

pendently of the distortions and variability produced by the exaggerated binocular disparities.

Indeed, this is just what happened: Shape discriminations were very accurate when the forms were

moving, and were uncorrelated with the variations in either slant or disparity. Not surprisingly,

shape discriminations were near chance accuracy when the forms were stationary because of the

perceptually inseparable conjoint effects of variations in slant and disparity. For the disparity-
discrimination task, however, motion had the opposite effects: Discriminations between the two

alternative disparity values were more accurate for the stationary than for the moving forms, evi-

dently because the congruence of the moving forms tended to obscure differences between the sta-

tionary disparity spaces.

Thus, these results indicate that the visual scaling of 3-D structure from stereoscopic disparity

derives from the congruences of the perspectively changing forms. Analogous to the case for sta-

tionary pictures and optic flow patterns, binocular disparity per se may have only an indirect rela-

tion to the perceived depths.
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Figure 1.-"Swans," etchingby M. C. Escher,1956.
Baarn-Holland.
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Figure 2.- Three types of congruences in images. (A) A cube in position P1 is moved in a tem-
poral sequence of displacements through 3-D space to position Pn. A single object appears

in a trajectory through space-time. (B) The same cubic form as in A appears simultaneously

in positions P1 and Pn, connected in this case by a spatial series of cubes. A 3-D space is

defined by the congruences of the spatial series of repeated component forms. (C) Two

objects are moved concurrently by a sequence of displacements as if rigidly connected. The

3-D structure of the space is indicated in this case by the congruence of the motions in the

separate spatial regions rather than by the congruences of the spatial forms as in the other two

panels.
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INTRODUCTION

One of the most remarkable perceptual properties of common experience is that the per-

ceived shapes of known objects are constant despite movements about them which transform their
projections on our retina. This perceptual ability is one aspect of shape constancy (Thouless, 1931;

Metzger, 1953; Borresen and Lichte, 1962). It requires that the viewer be able to sense and dis-
count his or her relative position and orientation with respect to a viewed object. This discounting

of relative position may be derived directly from the ranging information provided from stereopsis,

from motion parallax, from vestibularly sensed rotation and translation, or from corollary infor-

mation associated with voluntary movement.

The measurement of shape constancy usually involves requesting that the viewer make

some estimate of the geometric properties of an object, such as the apex angle of a isosceles trian-

gle. Significantly, shape constancy does not disappear during static, monocular viewing, but its
basis under these conditions must be different, since sensed motion is not involved. In a static

image, shape constancy amounts to the recognition that each of a variety of views of the objects in

the scene are all views of the same objects. This perceived constancy may be based on consciously

or unconsciously accessed information concerning alternative views of the objects. These "mem-

ories," however, need not be of complete objects, since perceived constancy may be based on

recall of only some salient features, such as parallelism of significant planes of the object.

In the absence of information directly providing range and orientation, as when viewing

realistic pictures, the viewer's relative position with respect to an object can be only indirectly

inferred from the projection of the object itself and its surround. The information in the projected

lines of sight in the optic array can be used to infer the relative position of the viewer only if the

viewer has at least a partial internal 3D model of the viewed objects and their surround (Grunwald

and Ellis, 1986; Wallach, 1985). Thus, "shape constancy" in static, monocular scenes is somewhat

circular, since the necessary shape information required to infer relative viewing position is itself

the shape of the object in question. Nevertheless, shape constancy can be obtained through an

interactive process if the viewer has a variety of static views of the same scene or object from

different viewing positions and is able to construct appropriate correct hypotheses regarding the

shapes. Because of inherent regularities in the world, viewers are usually quite good at forming

appropriate shape hypotheses in natural environments (Gregory, 1966). But they can be tricked

(Ittelson, 1952; Hochberg, 1987).

Shape constancy may be generalized to constancy of interrelations among objects in a spa-

tial layout. Just as the shape of an object ordinarily appears constant when a viewer moves with

respect to it, so too do the spatial interrelations among objects generally appear constant during
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corresponding movement of a viewer (Pirenne, 1970; Wallach, 1985; also see Ellis, Smith, and

McGreevy, 1987; Goldstein 1987). Piaget's decentering task, which requires that one imagine how

a scene would appear from an external viewpoint, is an experimental scenario that particularly exer-
cises this type of constancy (Piaget, 1932).

The Piaget decentering judgement is formally similar to that required of someone using a

map to establish viewer orientation with respect to some exocentric landmark. When based on a

map in which there is a marker representing the viewer's position, this judgement constitutes an

exocentric direction judgement (Howard; 1982). In recent experiments we have examined a spe-

cific instance of this judgement by presenting subjects with computer-generated, perspective views

of three-dimensional maps that have two small marker cubes on them (fig. 1). One marker repre-

sented the subject's assumed position on the map, i.e. his or her reference position. The other rep-

resented a target position. The subject's task was to make an exocentric direction judgement and

estimate the relative azimuth of the target direction with respect to a reference direction parallel to
one axis of the ground reference. In the previous experiments this reference was typically a full
grid.

Interpretations of recent systematic measurements of these exocentric judgements have
suggested that the observed patterns of error can be analytically described in terms of an external

world coordinate system rather than a viewing coordinate system centered and aligned with the

view direction. (McGreevy and Ellis, 1986; McGreevy, Ratslaff, and Ellis, 1985). In these experi-

ments in which scenes were viewed from the center of projection direction, errors were observed

in which the subjects exhibited a kind of equidistance tendency in that they judged the target cubes
to be closer to the axis crossing the reference axis than they actually were. The same bias appeared

independent of viewing direction, and thus the patterns of direction judgement error exhibited a

kind of position constancy; that is, the errors were functions of the physical positions of the targets
and not the subject's view of them.

Since the subjects were not allowed freedom to move the display's eye point during the

individual judgements, position constancy would have to be based on assumed properties of the

objects and features of the scene. The most likely feature that could provide the basis for this con-

stancy is the ground reference meshed grid. Since the subjects may reasonably make the correct

assumption that the grid axes are orthogonal, the grid can provide information about the com-

pressive and expansive perspective effects due to the viewing parameters and allow the viewer to

discount them. The information is provided most directly in the projected angle between the refer-

ence axis and the crossing axis. (Attnaeve and Frost, 1969; Ellis, Smith, and McGreevy, 1987).

Accordingly, removal of the crossing axis should remove the most direct information that

allows the viewer to discount the geometric consequences of his or her particular viewing direc-

tion. Thus, a display used for the same kind of exocentric direction judgements, but lacking the

crossing axis, should not exhibit position constancy. Direction judgement errors should now

depend upon the viewing direction, since the source of information that allowed subject to directly

determine the direction of the viewing vector has been removed. Experiment 1 examines this
possibility.

19-2



EXPERIMENT 1

Methods

The eight paid subjects who participated in the experiment viewed a spatial layout made

from a ground-plane reference and two slowly and irregularly tumbling wire-frame cubes marking

positions on the reference and target positions on the plane. The techniques of data collection and

viewing and display of the geometric projection were made identical to those used in previously de-

scribed analytical and experimental studies (McGreevy and Ellis, 1986; Grunwald and Ellis, 1986)

A ground reference of irregularly spaced, parallel lines aligned with the reference direction
was constructed with randomized spacing (fig. 1). To assure presentation of the correct lines of

sight, the subject's eye was located at the center of projection. Two symmetrically placed view-
point locations which were rotated clockwise and counterclockwise 22 ° with respect to a reference

direction were used (left stations: -22°; fight station: 22°). Both had a depression of 22 ° below the

horizon. The target cubes were randomly placed at 72 equally spaced target azimuths. The subject

showed his or her estimates of the target cube azimuth angle with respect to the reference direction

by controlling a dial drawn electronically on the CRT with the method of adjustment.

Results

Analysis of variance of the errors in target azimuth showed a statistically significant inter-
action between viewing station and true azimuth, (F = 2.413, df = 71,497, p < .001); hence, the

azimuth error curves of left and right station appear to depend upon viewpoint.

Figure 2 shows the overall average error in the azimuth angle estimate for the left and for

the right station plotted on circular graphs in which the direction of the error is shown as a directed

arc. The across-subject means are good summaries of the data since the standard errors were only

1-4 °. For both stations a systematic relationship between the azimuth error and the true azimuth

angle is clearly recognized. Local minima in the errors, which are indicated by reversals in the
directions of the error arcs, are not exactly where an actual grid-crossing axis would be, but are

somewhat shifted toward a position orthogonal to the viewing axis. The largest direction errors are

near _+45° and _+135 ° azimuth, and the error patterns for the symmetrically placed view stations are

themselves approximate mirror images.

Discussion

The symmetrical pattern of mean error clearly shows a dependency on view direction and

demonstrates a breakdown of position constancy in the error pattern, thus confirming the initial

hypothesis that removal of the crossing axis should break down the position constancy. This
breakdown is particularly evident near _+90 target azimuth since these are generally not minimums

as they were for previous experiments with gridded ground references (McGreevy and Ellis, 1986;

Grunwald and Ellis, 1986). Thus, it is likely that the subjects are at least partially responding to the

actual projected geometric properties of the scene which are seen from the separate viewpoints.
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Thebreakdownof positionconstancywouldbeconsistentwith analternativehypothesis
whicharisesfrom previousanalysesof errorsinestimationof depicteddirectionsin pictures(Ellis,
Smith,andMcGreevy,1987;GogelandDa Silva,1987),andraisestheclassicalquestionof the
extentto whichperceptionof anobject'struegeometricpropertiescanbemadeto dependuponits
projectedretinal image(Thouless,1931;BeckandGibson,1955;Gilensky,1955;Gogeland
DaSilva, 1987).Accordingto this hypothesis,errorsin judgeddirectionin picturesaremodeled
asfunctionsof the interrelationsof actuallinesof sighttoviewedobjects.For viewing situationsin
whichpicturesareviewedfrom thegeometriccenterof projection,thisanalysismayberestricted
to hypothesizingthattheerrorin estimatedtargetazimuthe isproportionalto thedifference
betweenthedepictedandprojectedazimuthanglesy andy', respectively,i.e., e = k(y' - y).
Herethedepictedangley ismeasuredwith respectto thereferencedirection,clockwisepositive,
andtheprojectedangleon theretina y' ismeasuredwith respectto thecorrespondingprojection
of thereferencedirection,clockwisepositive.Positiveerrorscorrespondto clockwiseerrors.This
formulationmakesclearthatnotonly shouldviewingdirectionaffectthepatternof directionesti-
mation,butalsothatsymmetricallyplacedviewpointsshouldproducesymmetricalpatternsof
directionerrors.

Theactualerrordatadepartsin significantwaysfromthatexpectedbasedon thishypothe-
sis.Forexample,thehypothesisimpliesthatall directionerrorsfor aview from theleft station
shouldbeclockwise(fig. 3).Theactualerrordatacorrespondingto thisconditionarebothclock-
wise andcounterclockwise,asshownby thecircularplotsof theerrordata.Theseerrordatacould
bemodeled,aspreviouslysuggested,by introducinga22° shift whichproducesanappropriate
verticalshift in thetheoreticalfunction(McGreevyandEllis, 1986;McGreevy,Ratzlaff,andEllis,
1985).But this shiftwouldbeequivalentto assertingthatthesubjectis respondingto apotential
projectionratherthantheoneheor sheactuallysees.Sincethedatashowevidenceof viewpoint
dependenceandsymmetry,theuseof atheoreticalfunctionthatsuggestspositionconstancyin the
errordataseemsinappropriate.Accordingly,alternativetheoreticalexplanationsmaybesought.

Binocular Conflict

One possible influence on the direction judgements that the subjects were requested to make

is the binocular stimulus which they viewed. This stimulus was essentially the picture surface

which provided fixed accommodative and vergence demands as well as disparity and motion par-

allax cues to its physical distance. These cues tell the viewer that all objects are at an approximately

equal egocentric distance, i.e., on the picture surface. Thus, if exocentric direction were to be

based solely on egocentric ranges estimated from the binocular information, all targets would be at

the same distance. In the reference system used, all targets would appear at azimuth positions per-

pendicular to the view direction; e.g., for a left view station they would appear either at 112 °
or 68 ° .

This binocular information is at odds with the monocular information that is drawn on the

display, e.g., the size changes of the cubes as its depicted distance changes. The viewer is in a

sense being presented with two simultaneous but conflicting stimuli, one binocular and the other

monocular. One may suppose that the resulting perception is a combination of the two. Conflicts of

this type have been studied in classical experiments (Beck and Gibson, 1955; Gogel, 1977) in

which monocular and binocular stimuli are superimposed and viewed. Significantly, the finding

has been that for some simple stimuli, the binocular depth sensation spreads to determine the
apparent position of the monocularly viewed component of the visual field. Accordingly, it is
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reasonableto suspectasimilarprocessactingin thepresentexperimentin whichthebinocular
informationin thepicturesurfacecausestheapparentpositionsof all targetsto beattractedto a
planenormalto theview direction.Thisprocessprovidesahypotheticalmechanismof the
equidistancetendencyobservedinpreviousexperiments.Its effectscouldbeexpectedto bedomi-
natingwereit not for theopposinginfluenceof theremainingmonoculardepthcuesprovidedby
familiar shapesin theimage.

Familiar Shape

Assumptions regarding the physical properties of objects in pictures are necessary for pic-

ture perception because of the inherent ambiguity of the pictorial information. Though the images
used for Experiment 1 are relatively impoverished in this respect, the viewer may introduce useful

assumptions such as that the reference lines dropped from the cubes markers are parallel and equal

and are themselves perpendicular to the ground reference. Other important assumptions would be

that the marker cubes remain equal in depicted size and that the lines in the ground reference are all

parallel and coplanar.

These assumptions allow the clarification of the ambiguities inherent in the picture and can

account for residual viewpoint-independent aspects of the errors. For example, despite the absence

of a crossing axis, the pattern of mean direction error reported reverses direction in a manner sim-
ilar to that found in earlier experiments with gridded ground references. This judgement bias has

been described as an "equidistance" since the errors indicated the perceived space is collapsed

toward the crossing axis, compressing the space in a picture. The clear observation of this bias

without a crossing axis shows that the crossing axis itself cannot be its cause.

Inspection of the circular plots of the direction error in figure 3 shows that zero crossings

of the direction error are not as closely associated with the _+90° target positions in the present

experiment as they were in similar experiments using a complete grid. In fact, there is substantial

error at these positions. For the most part the actual zero crossings are along axes rotated towards

positions orthogonal to the direction of view and hence parallel to the surface of the picture. That

they are not completely rotated orthogonal to the view vector is probably due to distance cues based

on the changing sizes of the cubes and reference lines which both provide relative distance
information.

In fact, it is probably correct to argue that shape assumptions are the principal basis for the
construction of a perceived space from the line-of-sight information provided by a picture. The

properties of this inferred virtual space are opposed, however, by the properties of the physical
space of the picture surface which, as mentioned earlier, provide a mechanism to produce the pat-
tern of direction errors that have been recorded. A simple test of this hypothetical mechanism

would be to repeat the previous experiment in a real scene, a situation where there is no binocular

conflict. Experiment 2 investigates this possibility.
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EXPERIMENT 2

Methods

Eight paid subjects viewed physical objects with the viewing geometry used in Experi-

ment 1. The marker cubes were physically reproduced with PVC pipe and positioned in a parking

lot adjacent to the Life Science Building at the Ames Research Center. The details of data collec-

tion and stimulus presentation are contained in a San Jose State University thesis (Smith, 1986).

Conditions in Experiment 1 were generally duplicated, although electronically produced apertures

and dials were replaced by actual objects with similar functions. A microcomputer randomized the

sequence of conditions for each subject and timed and collected the responses.

The subjects viewed the stimulus scenes binocularly from about 61 cm behind and centered

in the viewing windows. At the 28-m viewing distance the reference cube subtended an average

5.2 °. The cubes markers provided a significant stereoscopic stimulus since the binocular disparity

of the target varied between 6.6 to 9.8 ft around the reference cue. This maximum disparity differ-
ence of 3.2 ft is about 50 times the stereo threshold, but within typical values for fusion area for

the retinal excentricities used. Subjects were required to make azimuth judgments of 24 equally

spaced, randomly presented target positions. Two viewing directions (+22 ° left and right viewing

stations, respectively) and two square window apertures (30 ° and 60 ° FOV) were used. The depen-

dent variable again was the error in judging target azimuth direction.

The distance between the two observation stations was 21 m. Rather than have subjects

walk this distance as often as a completely random schedule would dictate, each subject stayed at

one direction of viewing for at least 16 trials (one block). For each direction of viewing, the facto-

rial combination of 24 target cube directions, two window sizes, and two repetitions were ran-

domly assigned to six blocks of 16 trials. Each subject was presented with 12 blocks of trials (six

at each direction of viewing). The total of 192 trials required about 3 hr to complete.

Results

The azimuth error data were analyzed by variance with repeated measures on target

azimuth, window aperture, and viewing direction. Variation in the amount of background

information by changing window size did not significantly affect judgments of azimuth error and

did not interact with any other factor. As in Experiment 1, the two-way interaction between
azimuth of the target cube and view direction was statistically significant (F(23,138) = 3.861,

p < .001).

The nature of the statistical interaction that was observed between viewpoint and target

azimuth is clarified by circular plots in figure 4. This figure illustrates the underlying symmetry in

the error data, which is similar to that in Experiment 1. It also shows the absence of the "equidis-

tance tendency" and generally smaller size of the errors.
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Discussion

Theazimutherrorobservedin Experiment2doesnotexhibitthe"equidistancetendency."
Thustheresultsconfu'rnthesuppositionthatthebinocularconflictor othercuesto thepicturesur-
facesuchasmotionparallaxcouldbethecauseof thebias.In Experiment1theazimutherrorsfor
displaysviewedfrom thecorrectgeometriceyepointweregenerallyawayfrom thereferenceaxes
andtowards the crossing axis. This equidistance tendency has been called a "telephoto bias" since

it resembles the pattern of error that would be induced if the view of the spatial configuration were

distorted by a telephoto lens. In fact, it was not a true "telephoto bias" and equidistance tendency is

a better description because the reported spatial compression was not aligned with the actual view

direction, but with the axes, or implicit axes, in the scene itself. In contrast to the relatively large

bias in Experiment 1, the errors in Experiment 2 are smaller and away from the crossing axes
rather than towards them. The residual error pattern, however, does continue to exhibit a symmet-

rical dependence on view positions, supporting the conclusion from Experiment 1 that the error

pattern does not exhibit position constancy. The new error pattern in Experiment 2 needs an

explanation.

The bias pattern is not similar to what would be expected if it were due to the difference

between the size of the projected and depicted azimuth angles. If the difference between depicted

and projected angle were the cause of the observed error, the errors would be expected to resemble

the traces in figure 3. As in Experiment 1, the results do not closely resemble these traces, so new

alternatives need to be considered to explain both the smaller average size of the error and the par-

ticular pattern itself.

Since correct three-dimensional interpretation of the array of lines of sight to the objects in

view depends upon both a correct internal model and a correct estimate of viewing direction, errors

in either of these assumptions can be a source of systematic bias. Systematic errors in the internal

model would result in apparent loss of perceptual rigidity when the object was rotated or translated.

These kinds of distortions are not expected and were not reported as the cubes tumbled in the wind

during Experiment 2. Accordingly, the biases found in this experiment might be attributed to incor-

rect estimation of the viewing direction. A classical error of this kind is called "slant overesti-

mation" (Sedgwick, 1986) and corresponds to overestimation of the amount of depression of the

viewing vector.

Figure 5 shows a family of theoretical azimuth error curves for different overestimates of

the viewing vector depression together with the data from Experiment 2. These curves are con-

structed on the assumption that the viewer makes an error in the interpretation of the projected tar-

get angle, in a sense, by looking up its 3D characteristics in the wrong table. For example, the trace

labeled "elevation = -40" shows the expected azimuth errors from a subject who, when looking a

scene from a left viewing station (azimuth = 22.5 °) with a -22.5 ° elevation angle, assumes that the

actual elevation is -40 °, and looks up the 3D interpretation of the projected angles that he or she

does see in the wrong table, i.e., the one for a -40 ° elevation. Interestingly, the hypothesis that

azimuth error could be influenced by the difference between depicted target angle and its projec-

tion, which was described in the discussion of Experiment 1, is really a special case of this kind of

slant overestimation. The hypothesis discussed in Experiment 1 is equivalent to asserting that the

overestimation is equal to the complement of the actual depression angle.

Figure 5 also shows the azimuth error data from Experiment 2 combined for both view
stations by reflecting the data from the right view station so as to allow averaging with that of the
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left station.Thecombineddataarethenreplottedin cartesianformfor comparisonwith thetheo-
reticalcurves.Theexperimentaldataexhibitseveralfeaturesinconsistentwith aslantoveresti-
mation.In particular,theerrorsaresmaller,notmarkedlysinusoidal,andnotbiasedin thecorrect
directions.Theelevationoverestimationhypothesispredicts,for example,thatfrom theleft view-
ing station,errorsfor depictedanglebetween0° and180° shouldbeclockwisewhereasthedata
showapredominantcounterclockwisebiasfor theseconditions.In fact,thedatamaysuggestan
elevationunderestimation.Clearly,furtherexperimentsin whicherrorsin exocentricallyjudged
azimuthandestimatesof viewingdirectionelevationandazimutharebothcollectedareneededto
evaluatetheroleof viewingdirectionmisjudgementasanexplanationfor thepatternof azimuth
error.

Summary

1. Errorsin exocentric judgements of the azimuth of a target generated on an electronic

perspective display are not viewpoint-independent, but are influenced by the specific geometry of
their perspective projection.

2. Elimination of binocular conflict by replacing electronic displays with actual scenes

eliminates a previously reported "equidistance tendency" in azimuth error, but the viewpoint depen-
dence remains.

3. The pattern of exocentrically judged azimuth error in real scenes viewed with a viewing
direction depressed 22 ° and rotated +_22° with respect to a reference direction could not be

explained by overestimation of the depression angle, i.e., a slant overestimation.
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or center (0 °) viewing azimuth.
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HOW TO REINFORCE PERCEPTION OF DEPTH IN SINGLE TWO-
DIMENSIONAL PICTURES

S. Nagata
NHK Science and Technical Research Laboratories

Tokyo, Japan

ABSTRACT

The physical conditions of the display of single two-dimensional pictures, which produce

images realistically, were studied by using the characteristics of the intake of the information for

visual depth perception. "Depth sensitivity," which is defined as the ratio of viewing distance to

depth discrimination threshold, has been introduced in order to evaluate the availability of

various cues for depth perception: binocular parallax, motion parallax, accommodation,

convergence, size, texture, brightness, and air-perspective contrast. The effects of binocular

parallax in different conditions, the depth sensitivity of which is greatest at a distance of up to

about 10 m, were studied with the new versatile stereoscopic display. From these results, four

conditions to reinforce the perception of depth in single pictures were proposed, and these

conditions are met by the old viewing devices and the new high-definition and wide television

displays.

I. INTRODUCTION

The sensation of reality in a picture occurs because of visual depth perception. Therefore, in

order to display pictures as if the observer were looking at real objects in three-dimensional

space, the physical conditions of the pictures must be matched to the characteristics of the pro-

cess involved in the intake of information relative to depth perception. The objectives of this

paper are to report the results of an investigation on the availability of many cues for visual depth

perception, using a common evaluating scale, and to propose ways to reinforce the perception of

depth in single two-dimensional pictures.

It is well known that a pair of pictures taken from two laterally separated positions creates the

effect of stereoscopic depth perception with binocular cues, such as binocular parallax and con-
vergence cues of the eyeball shown in figure 1 and table 1. However, there are other monocular

cues shown in figure 1, such as the accommodation cue of a crystalline lens, motion parallax on

moving vision, and pictorial cues. The pictorial cues include transversal size, longitudinal size,

texture density and shape, intersection, position of horizon, brightness and shade, air-perspective,

and color effect. The study of the comparison of the effectiveness of each of the cues and the

study of the interaction between different cues are necessary.

_This paper is based on an earlier version of this paper which appeared in Proceedings of the Society for
Information Display, Vol. 25, No. 3, 1984, pp. 239-246, and is reproduced by permission of the Society for
Information Display.
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The availability of cues for visual depth perception has been investigated. Kiinapas (ref. 1)

studied the subjective absolute distance by the method of magnitude estimation as a function of

viewing distance up to 4 m and five viewing conditions, where the cues (retinal size, binocular

parallax, accommodation, and brightness) were fully provided or partially reduced.

He found that accommodation did not permit any accurate perception of distance, and that

retinal image size was one of the most important cues in the judgement of absolute distance from

the observer. He also pointed out the similarity of his result and the result of Holway and Boring

(ref. 2) that the apparent size at a fixed viewing distance varies with the viewing condition.

However, Kiinapas did not study motion parallax and relative depth perception.

When we view a picture which contains many objects, the space perception in the picture

depends on the results of the relative depth perception among the objects.

Stubenrauch and Leith (ref. 3), using holograms, found the interposition cue to dominate over

most combinations of other cues (binocular parallax, motion parallax, and retinal size) for per-

ception of normal relief or reversed relief. However, these effectiveness estimations were not

measured at large viewing distances.

Furthermore, since the cues on the retina, such as parallax, size, brightness, etc., have differ-

ent physical attributes, the threshold value of each cue change for depth perception cannot be

directly compared with each other.

The author proposes a common scale for evaluating the availability of depth cue, which is
defined as the ratio D/AD of the viewing distance D to the detection threshold AD of depth

difference (depth threshold). We call this ratio scale "depth sensitivity" (refs. 4,5) of vision.

In this way, the effectiveness of various cues can be quantitatively compared with each other

as a function of viewing distance.

II. METHODOLOGY

Hypothesis

First, the relationship between depth sensitivity and the detection of quantitative cue change

for depth perception of the object's image on the retina was considered from the viewpoint of the

hypothesis that the change of cues is transformed into perception depth information while at the
same time conserving the information concerning the character of the object on the base of the
character as shown in table 1.

For example, when a value R(D) of the cue of binocular viewing direction is inversely pro-

portional to the viewing distance D and is proportional to the constant A (where A is the distance
between two pupils), the detection threshold AR of the change of the value of a cue such as the

binocular parallax is obtained from the depth threshold AD as follows:

AR = R(D)- R(D + AD) = A/D- A/(D + AD) (1)
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Thenthedepthsensitivityis deducedas

D/AD = AJ(AR •D) - 1 (2)

Second, by dilating on Fechner's Law (ref. 6), it was proposed that depth sensation is based

on the sum of the small depth sensation unit dS=K corresponding to the depth thresholds. The
depth sensation S(D) is obtained by

o o

(K/AD)dD (3)

where K is a transformation constant.

Psychophysical Experiment

The depth sensitivities of the cues of binocular parallax, motion parallax, and accommodation

were obtained from the depth thresholds in psychophysical experiments. The characteristics of

the cue-change threshold AR is induced from the depth threshold AD measured under the limited

condition, and the depth sensitivities of these cues were calculated. Furthermore, the depth

sensitivities of other cues were also calculated by estimating the detection threshold of cue
change.

III. EXPERIMENTS I

For measuring the depth threshold, an observer, by using a remote-wire system, moved one

of the two black rods (20 arc/min in width, 1 cd/m 2) as illustrated in figure 2, so the difference of

depth can be noticed through a slit (40 arc/min in height, 19 arc/deg in width).

Two males (SN 33 yr of age, left V.A. 1.2 corrected, right V.A. 1.2; KI 23, 1.5, 1.5) and one

female (NW 23, 1.2, 0.6) having normal streoscopic vision served as subjects in these
experiments.

The depth thresholds on the binocular parallax, the motion parallax, and the cue from accom-

modation were measured as a function of viewing conditions.

The viewing conditions for controlling the depth cues were obtained by combining binocular

observation or monocular observation and static observation or lateral moving observation, and

observation with natural pupils or artificial pupils (1 mm diameter).

In moving observations, the observer moves the upper body rhythmically to the right and left

at different distances and velocities which were measured in real time by an electronic scale
wired to the head.
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Theviewing distanceto thefixed rod was1,2, 5, and 18m, respectively.Thebrightness,the
retinal size,andtheintervaldistanceof two stimuli werenotchangedasa functionof observa-
tiondistance.

Themeasurementsweretakenfor eighttrialsadayfor threedaysfor eachpersonundereach
condition.

IV. RESULTS I

Binocular Parallax, Motion Parallax, and Accommodation Cues

The depth thresholds with static binocular vision through natural pupils were obtained as

shown in table 2, and the symbol (o) in figure 3 indicates the depth sensitivities as a function of

distance obtained from the depth threshold of the typical subject (SN).

The cue-change threshold AR on binocular parallax shown in figure 4 was calculated from

the depth threshold AD with binocular vision from equation (1). It was considered that the

binocular threshold neither changed as a function of viewing distance, i.e., convergence angle,

nor as a function of the size of the pupils.

This was in agreement with the other two observers' results and with those reported by Ogle
(ref. 7), Zoth (ref. 8), and Nishi (ref. 9). But Amigo (ref. 10), and Lit and Finn (ref. 1 1) reported

that the threshold slightly increases as the distance decreases to less than 1 m because of the

instability of the oculomotor.

The depth sensitivities of this cue shown by the solid line in figure 3 are calculated from

equation (2), where a constant value is substituted for AR. The maximum distance Dmax for
which the sensitivity falls to zero is A/AR.

The depth sensation S D on binocular parallax is deduced from equation (4) and may be satu-
rated at about 10 m (ref. 12).

SD=

DO DO

(4)

A 1 1

= _-_ (_00 - _)+ l°gn _--Q0]

The depth thresholds for motion parallax with moving monocular vision with a natural pupil

at the speed at which the subject could detect the depth are shown by the symbol (n) in figure 3.

The depth threshold at a viewing distance of 3 m was measured for different conditions, and it

was dependent on the velocity COD,but not on the distance d of movement as shown in
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figure 5(A). Theoptimumvelocity 0_awas6-8*of arc/sec,andatvelocitieslower thanthe
optimumvelocity, thethresholdvelocity of motionparallaxis constant.

Graham(ref. 13)andZeger(ref. 14)reportedon the increase in the threshold as the velocity

increases from about 6* to 20* of arc/sec. But in our results shown in figure 5(B), the velocity

threshold of motion parallax Ao is constant at velocities lower than the optimum. This con-

stancy is deduced from the detection model where the minimum parallax is sampled at a constant
interval time.

The depth sensitivity of motion parallax calculated from equation (2) is represented by the

solid line in figure 3. The sensitivity is c0a/Ac0 and is constant up to the distance at which the

optimum velocity of the body movement is obtained, and when the distance is exceeded the

sensitivity decreases. The descending curve is obtained by substituting the maximum velocity
Vmax of body movement for A, and A¢.0 for AR in equation (2).

This motion parallax is produced not only by the absolute motion of the observer, but also by

the relative motion of the objects, and in the case of moving vision on some riding machine with

a speed higher than the motion of the body, the sensitivities of motion parallax at large distances

are maintained at the same level as that for short distances and are higher than that for binocular
parallax.

The depth thresholds for the blurring cue of accommodation with static monocular vision

through a natural pupil are represented by the symbol (A) in figure 3, and the depth threshold

with vision through the artificial pupil was nearly equal to or slightly greater than the viewing
distance.

The depth sensitivity of the natural accommodation cue was also calculated by substituting
the pupil diameter during observation for A in equation (2) and by substituting the blurting

threshold resulting from equation (1) (similar to the reciprocal of his visual acuity) for AR in
equation (2).

Other Cues

The depth sensitivities relative to binocular parallax, motion parallax, and accommodation

cues obtained from equation (2) are satisfied by the data resulting from the experiment. There-

fore, we applied the same method of analysis in obtaining this sensitivity data to the sensitivity

data relative to the other cues: convergence, size, slanted shape, texture density, brightness, and
air-perspective contrast.

In figure 2, when two objects positioned at a large visual angle are observed in binocular

vision, convergence of the line of sight of two eyes results in depth perception. However, the

detection threshold of convergence change is larger than the detection threshold of binocular

parallax, and the depth sensitivity of convergence was obtained from equation (2) and is repre-
sented by dashed line in figure 3.

The depth sensitivity to the cue of the object transversal size shown in figure 3 was calculated

from equation (2), where size-S is substituted for A and the ratio of the size change detection

threshold A0(-AR) to size 0 = S/D in visual angle is constant as reported by Ogle (ref. 15).
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This sensitivityagreeswith thedepththresholdundermonocularobservationof two square
targets(1.8m2) measuredbyTeichner(ref. 16). ThemaximumdistanceDmis determinedby
theabsolutedetectionthresholdof sizeperception.

Thedepthsensitivitieson the shape of a rectangular object whose upper part inclines at larger

distances is represented by

D S D
1 (5)

AD - A0. D L. sinott

where S is the horizontal length of object, A0 is the size-cue threshold, L is the height of object,

and ott is the slant threshold.

Freeman (ref. 17) measured the slant threshold of 14 different rectangles without texture by

monocular vision. The depth sensitivities calculated from these data varied with height. The

optimal depth sensitivity was 78 when D = 135 cm and L = 8 cm. This sensitivity is larger than

the data of Teichner, resulting in the difference between the shape cue of one object and the size

cue of two separate objects.

In viewing a textured pattern, there are different sizes or density of texture: one is the

transversal size or density in a plane rectangular to the depth direction as mentioned above, and

the other is the longitudinal size or density along the depth-directional line.

The depth sensitivity on the latter was calculated from equation (6) and is shown in figure 3:

(6)

where S is the object's longitudinal size on the depth direction, H is the distance between the

visual line and the object plane, and the ratio of the longitudinal size 0 in visual angle to the size

cue threshold A0 is the same as the ratio of the transversal size cue threshold. This sensitivity is

twice as large as that for the transversal size.

The depth sensitivity on the brightness cue shown in figure 3 is deduced from equation (7):

D L.r I
AD - 2 = 2 -- (7)

AI • D 2 AI

where L is luminous intensity, D is the lighting distance, r is the refractory factor of the object, I

is the luminance of objects, and AI is the cue-change threshold of luminance. This sensitivity is

satisfied even at a very small stimulus level at which point Ricco-Piper's law is applied.

When the observer or viewing objects move in three-dimensional space, the projected retinal

image changes in position, size, shape (ref. 18), density, and luminance, and the depth perception

is effected by those changing velocity.
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Thedepth sensitivity of the air-perspective contrast cue results from the contrast-diminishing

function of equation (8), except for the case of blurring or color effect.

C = C0exp( -D ) (8)

where CO is the luminance contrast at very small distances and _ is the length constant deter-

mined by the air-scattering coefficient.

The sensitivity on this cue illustrated in figure 3 is calculated from equation (9):

D -CO Dexp - =-AC"AD = AC " t_
(9)

where AC represents the differences in threshold for the brightness contrast deduced from the

variation of detection threshold relative to the sine-wave grating pattern given by Watanabe et al.

(ref. 19).

V. EXPERIMENTS II

Because of the above-mentioned result that the depth sensitivity of binocular parallax was

very high in comparison with other cues, the effects of binocular parallax in other conditions and

the interaction effect between binocular parallax and other monocular cues were studied. In
Experiments I the change of binocular parallax and retinal size corresponding to moving objects

in depth could not be controlled independently. To measure the effects of two coexistent cues,

the new versatile stereoscopic display (ref. 20) of the standard TV system in conjunction with a

special video processor (fast phase modulation) were used.

In this system, as shown in figure 6, the stereoscopic pictures have been produced with

binocular parallax and convergence, controlled temporally and spatially with depth signals in a

manner comparable to brightness control signals of video signals - all independent of pictorial

cues; for example, size of pattern. The picture is also changed independent of the depth signal.

VI. RESULTS II

The subjects viewed the square pattern in streoscopic vision, of which the size and binocular

parallax was changed temporally and simultaneously by the pattern-size and depth-control sine-

wave synchronous signals, with variable amplitude and polarity of depth direction, so that the

conditions of equally felt depth sensations of motion could be measured. In figure 7, the hori-

zontal axis represents the amplitude in arc-minutes peak-to-peak of oscillation of binocular paral-

lax and the vertical axis represents the amplitude of oscillation of size. The smoothed curves

indicate the conditions of those two cues for which equal depth sensation occurred at three

levels; that is, depth threshold (A) and two suprathreholds (e,A,[]). The data show that the depth

sensation from two coexistent cues, changing size and binocular parallax, is a combination of the

individual effects of each cue, and when binocular parallax is zero, the changing size cue in
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monocularvision is moreeffectthanthechangingsizecuein binocularvision. In otherexperi-
ments,it wasfoundthattheeffectof binocularparallaxdecreasedwhentheobjectsmovedin
depthor in the lateraldirection.

VII. DISCUSSION AND CONCLUSIONS

The following conclusion were derived from the comparison of the depth sensitivities of vari-

ous cues and from the interactive effects of depth sensation from two different cues, size chang-

ing and binocular parallax.

1. The depth sensitivity relative to binocular parallax is maximum at a distance of up to
about 10 m.

2. The depth sensitivity to motion parallax is effective, and this sensitivity on motion at the

optimum velocity exceeds that of the binocular parallax at a distance greater than 10 m.

3. The cues from accommodation and convergence are effective for the relative depth per-

ception only at a distance of less than 1 m, but are effective for the absolute depth perception at

longer distances.

4. The pictorial cues are effective even at long distances, and the sharp edge of pictures, and

clear texture, shade, and gloss of the surface on objects strengthen the sensation of depth.

5. The effects of these cues work together and combine spatially on the wide visual field.

From the investigation of these sensitivities, the following conditions to decrease the sensa-

tion of flatness of the display plane of single two-dimensional pictures and to reinforce the depth

perception in the picture were found:

1. The effects of binocular parallax must be decreased.

2. The distance of convergence and accommodation must be close to the actual distance of

the objects in the picture.

3. The frame of the display must be separated from the images peripherally or depth-wise to
be defused.

4. There must be many monocular pictorial cues including the projection of three-

dimensional moving objects.

Conditions 1, 2, and 3 are attained by viewing with monocular vision or by positioning the

picture image at a distance of about 5 m; conditions 3 and 4, by making the visual angle of pic-

ture wide; and condition 4, by using a hi-definition and moving picture.

So, we can point out that the new high-definition and wide television displays (ref. 21) meet

these conditions, and these displays produce more realistic picture images than the conventional

television.
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It is well knownthat oneof theimportanceconditionsfor spaceperceptionis thesizeof the
viewing field of thedisplay,whichgivesself-motionperceptionto anobserver,suchaswhen
onestandsin a "Wander-Room"wherewall andceiling surroundingonerotates;nevertheless,
onefeelsself-motion.

It wasfoundthat avisualwide-angledisplayover30*inducesthesensationof reality
becauseof the integrationof thedepthcueeffects(ref. 22).

Theold viewingdevice called reflectorscope or vue d'optique (in Japanese, nozoki-karakuri,

which means "peeking device"), shown in figure 8, in which pictures were viewed through a con-

vex lens or a concave mirror, produces images of the picture realistically.

Concerning the reasons why this device produces reality, Valyus (ref. 24) and Schwartz

(ref. 25) pointed out that because of the aberration of the lens or reflector, binocular parallax
occurs and results in stereoscopic pictures, and also the difference between the illumination

intensities of the binocular images, because of the difference of the diffusion of the screen,

results in strereoscopic vision. If these explanations are correct, the disparity and the difference

of illumination between the binocular images would increase with the distance from the median

line of the picture, and then the depth sensation would depend on position.

However, according to the results of our observations, the depth sensation depends on the

nature of objects in the picture, and the depth sensation in monocular vision is equal to or better
than that in binocular vision.

Therefore, the actual reason why reality is produced on the old viewing device is that they

fulfill conditions proposed in our results in the case of pictures without movement.
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TABLE 1. DEPTH PERCEPTION CUES AND BASES OF CHARACTER FOR

TRANSFORMATION. O:OCULOR MOTOR CUE. R:RETINAL IMAGE CUE.

Cue

Binocular parallax

Binocular convergence

Accommodation

(blurring)

Motion parallax

Transversal size

Longitudinal size

Vertical position

Size, density

Shape

Motion

Intersection

Luminance

Shade

Air-perspective

Color

B :BINOCULAR VISION.

Objective change in 3-D

M:MONOCULAR VISION.

Base of character

Image change in retina for transformation

R.B. Relative distance Position disparity Unity

O.B. Absolute distance Position Optimum

O.M. Absolute Blurring Optimum

O.M. Absolute

R.M. Relative

R.M. Relative

Absolute (familiar)

R.M. Relative

R.M. Absolute

R.M. Slant in depth

R.M. Slant

R.M. Motion

R.M. Front and Back

R.M. Relative

R.M. Slant

R.M. Relative

R.B.M. Aberration

Position disparity Unity
Velocity

Size Identity

Size

Size, density

Shape

Velocity flow

Shape

Illumination

Illumination

Contrast, blurring
color

Color disparity

Identity

Uniformity

Simpleness

uniformity

Simpleness

Uniformity

Uniformity

Identity

Unity
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TABLE 2. DEPTHTHRESHOLDSON BINOCULAR VISION AS A FUNCTION OF
VIEWING DISTANCE

Viewing distance,m 2 3 5 18

Sub.SN 0.5 1.9 5.7 5.1(cm)
Sub.KI 0.2 0.4 1.2 2.9
Sub.NW 0.8 2.0 6.1 2.9
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Figure 1.- Illustration of visual cues for depth perception.

1: Binocular parallax "YL-"/R = 0D - 0D+AD at the distance A between pupils.

2: Convergence cue 0D - 0D+AD.

3: Blurring cue £ of accommodation on pupil diameter P.

4: Motion parallax 7L - _ or olD - olD+AD at monocular moving vision of distance A or
speed V.

5: Transversal size cue 0D - 0D+AD-

6: Longitudinal size cue on depth direction axis at distance H.

7: Density cue [(S/D) cos 0q -1 of texture on surface at slant oL

8: Shape cue at slant.
9: Intersection cue.

10: Brightness cue I1 - II+AI, I = r" L/I 2 of the object with refractory factor r at lighting dis-
tance 1 under lighting L.

11" Shade cue I cos ot on slanted surface.

12: Air-perspective contrast cue CD - CD+AD of air scattering constant q.
13: Color effect.
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Figure 2.- Apparatus for measuring depth thresholds.
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Figure 3.- Depth sensitivities of various cues for visual depth perception as a function of viewing
distance. Symbols (o,lI,A) indicate the averages of five measurements of subject SN and bars
on the symbol indicate standard deviations.

Binocular parallax: A

Motion parallax: Vmax
Accommodation: P

Air-perspective: CO

Transversal size: A0s

Texturefl__,ongitudinal size: A0s

Convergence: A0s
Brighmess: I/AI

= 0.065 m, A0 = 25"

= 0.8 m/sec, Am = 4'/sec, toa = 6°/sec

= 0.005 m of the natural pupil, A0A = [1/1.2]'

= 1, t_ = 1 km, AC = 11% of CD [+1 dB], Cmin = 0.02

= 2.5% of retinal size 0s
= 2.5% of retinal size 0s
= 10 min

= 0.02
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Figure 4.- Thresholds of binocular parallax as a function of viewing distance.
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Figure 5.- Depth sensitivities D/AD (curves of A) and the threshold of parallax velocity Am (curves
of B) as functions of angular velocity of movement c01) = V/D and movement distance A at a
viewing distance of 3 m.
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Figure 6.- Diagram of experiments for binocular parallax and size changing cue. LFO:low fre-

quency oscillator. ATF:attenuator. VSPG:variable size square pattern generator.
VSVP:versatile stereoscopic video processor. FD:fixed delay, ev:television video signal of

original picture, e0:phase-modulated video signal for left or right eye. ed:depth signal for
modulation of binocular parallax, es:synchronous signal. BS:beam splitter. PF:polarizing fil-

ter. AR,L; CR,L:position of pictures. A;C:perceived position.
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Figure 7.- Interactive effects of depth sensation from two kinds of cue, binocular parallax and

changing size cue with oscillating amplitude.

A: conditions for the threshold of depth motion perception

• ,A: conditions for equal depth sensation at two levels of suprathreshold

[]: condition of only size cue in monocular vision for equal depth sensation with that of •

--- : condition in actual moving

Sine-wave oscillation frequency, 1 Hz. Middle size, 6.4 cm (2.71 °) x 6.4 cm. Back luminance,
1 cd/m2; Pattern, 30 cd/m 2. Viewing distance, 1.35 m.
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a)

c)

b)

Figure 8.- Old viewing device called vue d optique (nozoki-karakuri) with one lens-mirror (a) and
with 24 lenses (b) in Japan and same type (c) in China and one kind (ref. 23) of new wide

television system (d).
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PICTURE PERCEPTION: OTHER CUES





N90-22938

THE EYES PREFER REAL IMAGES

Stanley N. Roscoe
ILLIANA Aviation Sciences Limited

Las Cruces, New Mexico

For better or worse, virtual imaging displays are with us in the form of narrow-angle

combining-glass presentations, head-up displays (HUD), and head-mounted projections of wide-
angle sensor-generated or computer-animated imagery (HMD). All of our military and civil avia-

tion services and a large number of aerospace companies are involved in one way or another in a

frantic competition to develop the best virtual imaging display system. The success or failure of

major weapon systems hangs in the balance, and billions of dollars in potential business are at
stake. Because of the degree to which our national defense is committed to the perfection of virtual

imaging displays, a brief consideration of their status, an investigation and analysis of their prob-
lems, and a search for realistic alternatives are long overdue.

CURRENT STATUS

All of our currently operational tactical fighter aircraft are equipped with HUDs. Helicopters

are navigated and controlled, and their weapons are delivered, with a variety of imaging displays

including, in addition to HUDs, both panel-mounted and head-mounted image intensifiers and
forward-looking infrared (FLIR) and low-light TV displays. Even some strategic aircraft and a

few commercial airliners contain virtual imaging displays. A new generation of remotely piloted

vehicles (RPV) are intended to be flown by reference to wide-angle but relatively low-resolution

sensor imagery presented stereoscopically by head-mounted binocular displays. And Detroit is
about to offer HUDs for cars.

THE TROUBLE WITH HUDS AND HMDS

As for the operational problems, about 30% of tactical pilots report that using a HUD tends to

cause disorientation, especially when flying in and out of clouds (Barnette, 1976; Newman, 1980).

Pilots frequently experience confusion in trying to maintain aircraft attitude by reference to the
HUD's artificial horizon and "pitch-ladder" symbology, particularly at night and over water, and

there are documented cases of airplanes becoming inverted without the pilots' awareness (Kehoe,

1985). Pilots have also reported a tendency to focus on the HUD combining glass instead of the
outside real-world scene (Jarvi, 1981; Norton, 1981). The resulting myopia is a special case of the

more general anomaly known as "instrument myopia" (Hennessy, 1975).

Misaccommodation of the Eyes

Whatever the cause, it is a repeatedly observed experimental fact that our eyes do not automati-

cally focus at optical infinity when viewing collimated virtual images, but lapse inward toward their

dark focus, or resting accommodation distance, at about arm's length on average (Hull, Gill, and
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Roscoe,1982;Iavecchia,Iavecchia,andRoscoe,1988;NormanandEhrlich, 1986;Randle,
Roscoe,andPetitt,1980). Theperceptualconsequenceof positivemisaccommodationis thatthe
wholevisualsceneshrinksin apparentangularsize.Thisshrunkenappearancecauses distant

objects to be judged farther away than they are, and anything below the line of sight, such as the
surface of the terrain or an airport runway, appears higher than it really is relative to the horizon
(Roscoe, 1984, 1985).

The effect of the HUD optics is illustrated in figure 1. The experiment was conducted by Joyce

and Helene Iavecchia at the Naval Air Development Center in Pennyslvania. A HUD was set up
on one rooftop and a "scoreboard" assembly with selectively lighted numerals of various sizes was

mounted on top of another building 182 m away and of about the same height. Observers were

asked to read scoreboard numbers as they appeared and also numbers presented by the HUD on

half the trials. Concurrently, the eye accommodation of the observers was measured with a polar-
ized vernier optometer.

Figure 1 shows the average focal responses to the scoreboard numerals and the background
terrain beyond the scoreboard, with the HUD turned Off and with it turned On. In either case the

observers' focal responses were highly dependent on their individual dark focus distances; in fact,

knowing each individual's dark focus accounted for 88% of the variance in focal responses under
all conditions of the experiment. Excluding Observer 9, whose dark focus was almost three

diopters (D) beyond infinity, the average for the remaining nine emmetropes was 1.06 D, or just
short of 1 m.

But the striking result shown in figure 1 is the fact that when the HUD was turned On, for all

10 observers, focus shifted inward from an average of 0.02 D, or 50 m, to an average of 0.20 D,

or 5 m. Once again excluding Observer 9, the average inward shift was from 0.27 D, about 4 m,

to 0.47 D, about 2 m. Although such shifts have little effect on the apparent clarity of the visual
scene, they have tremendous effects on the apparent size, distance, and angular direction of terrain
features.

Accommodation and Apparent Size

Despite wide individual differences among observers, the average apparent size of objects is
almost perfectly correlated (2 > 0.9) with the distance at which the eyes are focused (Benel, 1979;

Hull, Gill, and Roscoe, 1982; Iavecchia, Iavecchia, and Roscoe, 1983; Roscoe, Olzak, and

Randle, 1976; Simonelli, 1979). Thus, the positive misaccommodation induced by collimated

HUD symbology can partially account for the fact that pilots flying airplanes or flight simulators by

reference to virtual imaging systems make fast approaches, round out high, and land long and hard
(Campbell, McEachem, and Marg, 1955; Palmer and Cronn, 1973).

Such biased judgments also partially account for the fact that helicopter pilots flying with
imaging displays frequently collide with trees and other surface objects and the fact that the U. S.

Air Force between 1980 and 1985 lost 73 airplanes in clear weather because of pilot misorienta-

tion, resulting in controlled flight into the terrain (54), or disorientation resulting in loss of control

(19) while flying by reference to collimated HUDs (Morphew, 1985). When flying by reference to

panel-mounted or head-mounted imaging displays, helicopter pilots approach objects slowly and

tentatively, and still they are frequently surprised when an apparently distant tree or rock suddenly
fills the wide-angle sensor's entire field of view.
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Fixed-wingairplanepilotsflying with HUDsalsojudgeatargetto befartherawayandthedive
angleshallowerthantheyare,resultingin almost-always-fatal"controlled-flight-into-the-terrain"
accidents.In theU.S.Air Force,suchaccidentshavecontinuedto occurat therateof aboutone
permonthsinceHUDscameinto generaluseatthebeginningof thisdecade.Two monthsago
(June1987)anF-16left a smokinghole in theground,andlastmonthit wasanF-111. The
Navy'sexperiencehasbeenessentiallythesame.

Optical Minification

Misorientation and disorientation with panel-mounted and some head-mounted imaging dis-

plays are exacerbated by the fact that limited display size and the need to display the widest practi-
cal outside visual angles typically result in drastic optical minification, which adds to the perceptual

minification caused by the misaccommodation. If the display area were not so limited and could be
varied to accommodate the wide individual differences in dark focus distances, images of the out-

side world could be magnified by appropriate amounts to neutralize each individual's perceptual

bias. The average magnification required would be X1.25 (Roscoe, 1984; Roscoe, Hasler, and

Dougherty, 1966), but this value would be correct for only a portion of the population, possibly

requiring stricter pilot selection.

Image Quality

Display minification and perceptual biases are two sources of error in human judgments of
size, distance, and angular location, but there are other sources of error as well, namely, the vari-

able errors associated with adverse ambient viewing conditions (atmospheric attenuation and
reduced illumination), the limited resolution of cameras and display devices, and the further loss of

resolution with image intensification. All of these factors serve to reduce contrast and detail, the

principal components of image quality, and the accuracy with which people can extract positions,

rates, and accelerations relative to outside objects in the visual environment.

DISPLAY ALTERNATIVES

Because of the adverse effects of virtual images on eye accommodation, as well as the optical

minification and poor image quality typically associated with sensor-generated displays, our

judgments of spatial relations are simply not good enough to support complex flight missions as

safely or effectively as we need. To date the advocates of virtual image displays have adamantly
refused to acknowledge the implication of misaccommodation in the misorientation and disorienta-

tion of pilots flying with HUDs. Instead they have attributed the problems primarily to the limited
fields of view afforded by the combining glasses used with current systems.

To address the limited-field-of-view problem, each of our military services, including the

Marines, is spending millions of dollars a year--to say nothing of the IR&D funds invested by

private companies--to develop wide-angle, head-mounted imaging displays, in many cases cou-

pling camera line-of-sight to head or eye orientation. Still clinging to the assumption that the eyes

will focus collimated images at optical infinity, the advocates of head-mounted displays and
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head-coupledsensorsnow promisethatapilot will beableto maintaingeographicorientationand
makeveridicaljudgmentsof distances,ratesof closure,andangulardirectionsto visiblenavigation
pointsandtargets.

To dispelanydoubtthatsuchpromiseswill cometrue,designersof somesensoranddisplay
systemsaredeliveringimageryfrom twocamerasindependentlyto thetwoeyesto providestereo-
scopicviewing (orevenhyperstereoby exaggeratingtheinteroculardistancebetweenthecameras).
Manyareconvincedthatstereoviewingwill createanillusionof "remotepresence"andthereby
improvejudgmentsof size,distance,andangularlocationsufficientlyto makeit unnecessaryto
provideautomaticsensorsof vehiclepositionsandratesfor navigationandobstacleavoidance.
Experiencewith head-mounteddisplays,whetherbinocularor biocular(botheyesreceivingthe
sameimages),doesnotwarrantthesewishful thoughts.

Evidencefrom avariety of experimental and operational contexts indicates that binocular judg-
ments of size and distance are not markedly better than monocular judgments, except at very short
distances (as in threading a needle). In fact, Holway and Boring (1941) found monocular size

judgments to be more nearly veridical than binocular judgments when good distances cues are pre-

sent. In any case, the large bias errors in size, distance, and angular position judgments caused by
misaccommodation to virtual images would more than cancel any minor benefits of disparate
images to the two eyes.

In the absence of some striking breakthrough in human genetic engineering, the long-range
prognosis for head-mounted displays is not good. Not only do our eyes refuse to behave as dis-

play designers would like to believe, but the illusion of vection induced by the "streaming" of

objects near the periphery of wide-angle views often leads to motion sickness, particularly with
head-coupled sensors and the consequent smearing of the images with head movements. Unfortu-

nately our sole dependence on virtual imaging displays for tactical missions (HUDs now and

HMDs in the future) has resulted in almost total suppression of research and development of more

easily optimized direct-view displays of sufficient angular size to provide the needed fields of view
with appropriate magnification.

WHAT CAN BE DONE

If we dismiss the genetic engineering approach, there are still several reasonable courses of

action. In the short run, these include (1) trying to "fix" the HUD optics to compensate for the

misaccommodation that leads to misorientation, and (2) modifying the ambiguous HUD symbol-
ogy that leads to attitude reversals and subsequent disorientation. In the longer run, abandon the

virtual image approach and concentrate on large, integrated forward-looking and downward-

looking direct-view displays in which computer-animated flight attitude, guidance, and prediction

symbology is superposed on sensor-generated real-world imagery.

Fixing the HUD

To induce pilots to focus at optical infinity when viewing virtual images, Norman and Ehrlich

(1986) in Israel introduced a negative focal demand of-0.5 D with the desired result, although
there were wide individual differences in responses as a function of individual dark-focus

21-4



distances. Thus, the first experimental fix should be the addition of variable optical refraction to

offset each individual pilot's inward focal lapse induced by the HUD's virtual images. Turning the

HUD On would require a key coded to select the pilot's specific correction based on the dark
focus. At this time, no one can be sure how successful this fix will be, but it must be tried.

Almost as important is the complete redesign of HUD symbology. Just how complicated and

confusing it is can be appreciated from the estimate of an Army Instructor Pilot that an average

student helicopter pilot requires 200 hr of simulator and flight training to master the gaggle of

symbols (personal communication). Furthermore, the attitude presentation in fixed-wing airplanes

is conducive to horizon and pitch-ladder control reversals that result in disorientation and
"graveyard spirals" at night and in marginal weather. At the very least, a frequency-separated pre-

dicted flightpath "airplane" symbol that banks and translates in immediate response and in the same

direction as control inputs should replace the present velocity vector and acceleration symbology

(Roscoe, 1980, Ch. 7; Roscoe and Jensen, 1981).

Presenting the Big Picture

If head-mounted, wide-angle imaging displays are ever to be safe and successful, the apparent

minification of the outside world will have to be compensated for by individually selectable optical

magnification, or the eyes will have to be induced to focus at or near optical infinity, as in the case

of HUDs. Neither approach will be simple. Furthermore, the whole virtual image display concept

depends on a gross reduction, rather than any increase, in the weight of any head-mounted device

to be used in a high-_Q environment. All things considered, it is surely premature to give up on

direct-view, panel-mounted displays.

Large, integrated, direct-view displays offer many advantages in terms of visual performance
as well as ease of achievement and lower cost. Eyes focus real images more accurately than virtual

images (Hull, Gill, and Roscoe, 1982; Iavecchia, Iavecchia, and Roscoe, 1988; Randle, Roscoe,

and Petitt, 1980). Although many with 20/20 vision cannot focus out to optical infinity, all

emmetropes can focus at the distance of cockpit instrument panels. Thus, although magnification

of sensor-generated or computer-animated images of the outside world will be required, as it is
with direct-view projection periscopes (Roscoe, 1984; Roscoe, Hasler, and Dougherty, 1966), a

single, fixed-magnification factor of about X1.25 will suffice for most emmetropes.

To make room for large forward-looking and downward-looking (and possibly sideways-
looking) displays, a lot of single-variable dedicated instruments and controls will have to be

replaced by insets that appear selectively on the large displays as a function of the mission phase,

aircraft configuration, mode of operation, weather and traffic, system malfunctions, and in the case

of military aircraft, weapon selection. Furthermore, with the ever-increasing complexity of aircraft

systems and military missions, many future airplanes_espite their high degrees of automation--

will require at least two pilots with a redistribution of functions and available information.

In the military there will always be a heavy premium on being able to take advantage of what-

ever is visible to the naked eye. However, trying to combine synthetic imagery with contact visi-

bility compromises both, and a strong case can be made for distributing operational functions and

information sources between an "inside" pilot and an "outside" pilot. The inside pilot would nor-

mally do all the flying in instrument meteorological conditions (IMC) and most of the flying under

visual meteorological conditions (VMC), using a direct-view, wide-angle projection periscope and
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thelarge,panel-mountedpictorialdisplayssurroundingthepilot deepinsidetheairplane.The
outsidepilot wouldusehisor hereyesto supplementtheimagingsensors,domostof thecom-
municatingandproceduralhousekeeping,andfly anymaneuverthatrequiresdirectcontact
visibility.
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FROM A

INTRODUCTION

The user interface of a computer system is a visual display that provides information about the

status of operations on data within the computer and control options available to the user that

enable adjustments to these operations. From the very beginning of computer technology the user

interface was a spatial display, although its spatial features were not necessarily complex or explic-

itly recognized by the users. All text and nonverbal signs appeared in a virtual space generally

thought of as a single flat plane of symbols.

Current technology of high-performance workstations permits any element of the display to

appear as dynamic, multicolor, three-dimensional signs in a virtual three-dimensional space. The

complexity of appearance and the user's interaction with the display provide significant challenges
to the graphic designer of current and future user interfaces. In particular, spatial depiction pro-

vides many opportunities for effective communication of objects, structures, processes, naviga-
tion, selection, and manipulation. The following discussion presents issues that are relevant to the

graphic designer seeking to optimize the user interface's spatial attributes for effective visual
communication.

CURRENT SPATIAL APPROACHES TO USER INTERFACE DESIGN

In all user interfaces, there is a need to present data objects, processes, their status, and struc-

tures of various kinds. In addition, the designer of a user interface must determine means for

enabling the user to navigate among these objects, to select them, and to manipulate them in vari-

ous ways. Influenced by the introduction of the Xerox Star and Apple Macintosh computers in the

early 1980s, computer graphics programmers have emphasized recently the multiwindowed

desktop metaphor as a basis for appearance and interaction.

The desktop spatial metaphor assumes that the viewer is looking at a flat background, with one

or more rectangular windows in front of (or on top of, according to the implied orientation of the
conventional horizontal desktop) the background plane. The windows may tile the foreground or

may overlap in various ways. Icons, or other small signs, standing for objects, processes, struc-
tures, or data, can appear in the background plane or in the window planes. In addition to win-
dows, various menus and dialogue boxes can appear within windows or in front of any or all the

windows. In front of all of these elements, cursors may float across the visual field. Any of the

windows or the background may contain graphics images that depict a deep three-dimensional

space.
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Thespaceis designedasashallowlayeringof foreground,middleground,andbackground,
reminiscentof traditionalshallowspatialcompositionsin modernpainting(Loran,1963;Berkman,
1949).This multiple-layeredcompositionis alsoreminiscentof layeredcartoonanimationcells,a
kind of two-and-one-half-dimensionalspace,asit.is sometimescalled.

Certainvisualenhancementsto thedepictionof objectsin thespacearetypicallyusedto help
theviewerunderstandthespatialcomposition.Theseincludethefollowing techniques:(1)drop
shadows,(2) bevelededges,(3) highlightingandlowlighting, and(4) shrinkingandgrowing.

Forexample,drop shadows,typicallydirectedto thelowerright,helpto conveythelayering
of windows,pull-downor pop-up(moreexplicitly, pop-in-front-of)menus,or dialogueboxes. In
someuserinterfaces,icons,buttons,switches,menuelements,or entirerectanglesof menus,dia-
logueboxes,or windows,maybegivenbeveledsidessothattheyappearto protrudetowardthe
viewer. Sometimestheir sidesarecoloredwith varyinglevelsof gray-valueto strengthentheillu-
sionof three-dimensionalform andalight source,oftenimpliedto belocatedat theupperleft. In
addition,entirewindowsor otherareasof thescreenmaybehighlightedto comeforwardto the
viewer,while otherwindowsmaybelowlightedto suggestthattheyarefartherbackin space.
Elementssometimeschangetheirsizeandappearance;for example,aniconmayenlargeto become
awindow. This is oftenshownasaspatialgrowthin twodimensions,whichcontributesto the
illusionof overlappingelements.

Thesetechniquesaresimilarto thoseemployedbydesignersto enhanceinformation-oriented
graphics,suchasthedesignof charts,maps,anddiagrams(Herdeg,1981). Theyhavedistinct
communicationvaluefrom agraphicdesignpointof view. Thesespatialqualitiesaccomplishthe
following:

1. Distinguishvariouselementson thescreen

2. Helptheviewertorecognizeparticularclassesof objects

3. Addcharmor appealto thedesignstyleof theuserinterface

4. Conveycorporateor productdesignconventions

Besidesthetraditionaldesktop,theimageof thecontrolpanelis alsousedin someuserinter-
faces,in whichpartor all of thescreenmayconveyoneormoreflat panelswith switches,knobs,
andothercontroldevices.A varianton thedesktopis thegiantdesktopin whichtheviewersees
onepartof thebackgroundthroughaviewportandmustusescrollingdevicesto examineother
areas.Anothervariantof thedesktopmightbecalledthemultipledesktopin whichtheviewermay
movefrom desktopto desktopby zooming,suddencutsor pops,orothervisual techniques.A
memorableapproachusingsoundcuesto aidspatialcueswaspresentedby theMIT Architecture
MachineGroup'sspatialdatamanagementsystem(Bolt) in the 1970sin whichthebackground
planezoomedtowardtheviewerwith anaudiblewhooshastheviewersuddenlydroppedontoa
layerbelowwith anaudiblepoppingsound.Apple'sHypercardandsimilarhypertextproducts
generallyextendthenotionof thescreenasasetof planes.
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OTHER SPATIAL METAPHORS

Programmers have experimented with other spatial metaphors to facilitate human-computer
communication. One alternative is the metaphor of architecture. The Learning Company, for

example, has offered since the early 1980's an award-winning children's game called Rocky's

Boots, programmed by Warren Robinet, that provides the viewer with the cognitive model of a set
of rooms, each with entrances and exits. The screen display communicates a set of spaces linked

by the topology of familiar architectural experiences. Another approach was taken in the work of
Gould and Finzer (1984). They proposed a cognitive model of theater, in which the entire display

was depicted as a stage set. This approach implies a deeper spatial metaphor than the traditional

desktop.

Other approaches are possible as workstations provide ever greater capabilities to manipulate
three-dimensional reality. For example, at the Microcomputer Technology Consortium, Austin,

TX, the Semnet project proposed a deep space for viewing and manipulating a semantic network.

Another example is the head-mounted display project at NASA Ames Research Center, Moffett

Field, CA, begun by Michael McGreevy in which the viewer sees a full three-dimensional envi-
ronment for all appearance and interaction imagery. With the advent of screens using Adobe's

PostScript picture definition language, as in Sun and Next's products, it is possible to display

screen metaphors using the building or even the urban environment as a basis for spatial commu-

nication of the user interface. All that is required is a set of familiar symbols, a familiar spatial

arrangement, and a familiar ritual for interacting with them. Videogames in the entertainment

industry have employed routinely a variety of spatial idioms, including rooms, buildings, and

landscapes to convey the field of action.

FUTURE DIRECTIONS

Within the entertainment field and within current user interface design, future directions of

spatial representation are already emerging. Two areas of emphasis are depictions of deep space

and depictions of three-dimensional objects.

In commercial cable and broadcast television and in the film industry (Morgan and Symmes,

1983), there has been a continuous fascination with depictions of deep space. The title sequence of

the Star Wars movie, in which text moves backwards at a steep angle from the viewer, inherits a

tradition from older films. Today, it is routine for evening news programs, weather reports, movie

introductions, and station breaks to feature photographic images, typography, and other elements

of flying logos swirling about within deep spatial representations.

All depictions of surfaces, projected light and cast shadows, and dynamic objects in computer

graphics are currently very expensive to produce, requiring significant budgets, time, personnel,
and equipment. However, the creators of sophisticated animation software, like Wavefront, are

broadening the base of hardware and user groups, so that the industry in general will be nurtured

with more powerful spatial display and image rendering capabilities. Eventually these capabilities

will be routinely available for widespread use in the depiction of user interface components.
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Evenwithoutexpensiveworkstations,it is possibletodisplaythree-dimensionalobjectsas
componentsof theuserinterface.A currentmusiceditingsoftwarepackageontheCommodore
Amiga, for example,showssolidpillarsandanarchframingthesidesandtopof thecontrolsfor
musicalcomposition.

SPATIAL DEPTH CUES

The use of spatial relations to depict the elements of the user interface suggests that designers

may find it useful to review Gibson's list of visual cues that establish the perception of space.
These perspective experiences are summarized in Hall's book, The Hidden Dimension (1982).

Briefly, the taxonomy of spatial depth attributes is the following:

Position

Texture: gradual increase in density of texture of a receding surface

Size: gradual decrease in size of distant objects

Linear perspective: parallel lines receding to vanishing points

Parallax

Binocular: an image with shifted object locations for each eye

Motion: objects moving at uniform speeds appear slower if distant

Other Cues

Aerial perspective: increased haziness and change in color and conu:ast with distance

Blur: objects nearer or more distant than the focal plane appear fuzzy
Vertical location in the visual field: lower part appears nearer, the upper farther

Shift in double imagery: in distant views, nearer objects have doubling gradient

Completeness or continuity of outline: nearer objects overlap farther objects

Shift of light and dark: abrupt changes appear as edges, gradual as roundness

Some, but not all, of these cues are currently employed within user interfaces in order to create

convincing spatial scenes. As user interfaces become more visually complex, designers will utilize

more of these depth cues and will consequently need to determine user interface spatial-depiction
attributes in a systematic manner.

RELATION TO INDUSTRIAL OR PRODUCT DESIGN

In addition to more complex spatial metrics and spatial metaphors that unite objects in a contin-

uous space (either the familiar Euclidian, the less familiar non-Euclidian, or even strangely warped
topologies), increased sophistication of spatial display also means that the individual components

of the user interface can take on elaborate internal spatial structures. All of these typical user

interface components, such as windows, menus, dialogue boxes, control panels, icons, and
cursors, can acquire significant plastic form attributes.

Consider the following examples of possible attribute sets:
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Windowswith solidextrudedshapesfor title areaandscrollbars
Scrollbarsappearingastranslucentroundcolumnswith thesymbolfor thevisibleportionof

thescreenrepresentedasasolidtubeslidingwithin them
Windowsasthefront surfaceof rectangularparallelopipeds,with regularconventionsof

semanticsassignedto theotherfacesof thesolid
Iconsasthree-dimensionalblockswith internalmovingparts,whosesurfacecharacteristics

(metallic,rough,warm,etc.)or interlockingfeaturesmightcontributeto theirdenotation
Cursorsaslarge,three-dimensionalportraitswhosepointingfingertipsfocustheuser'satten-

tiononaparticularscreencomponentwhile theirfacialexpressionconveysimportantconnotative
content

At thispoint, userinterfacedesignerswouldbenefitby examiningthehistoryandcurrentprac-
ticeof professionalsin graphicdesign,architecture,industrialdesign,andproductdesign(Herdeg,
1981;Jencks,1982;Pevsner,1963;Industrial Design Magazine). In contemporary industrial

design, for example, one finds a dialectic taking place between minimalist, Apollonian approaches

(International style, Bauhaus style, etc.) in which all objects have a highly consistent, limited

selection within attribute space, and the more exuberant, Dionysian approaches (Memphis style,

product semantics style, post-modern style) in which eclectic, exotic, wildly different attribute

selection reigns. User interface design at this point leaves the engineering domain and enters the
world of aesthetic styling, which contributes significantly to the marketing of products world-

wide. It is also in this realm of the user interface as plastic, shaped artifact, that corporate design
or product design standards influence the three-dimensional attribute selections (Marcus, 1984,
1985).

As user interface design takes on more spatial attributes, the collection of symbols in space take

on cultural characteristics far more complicated than the basic issues of ergonomic design. It
would seem reasonable for user interface designers to consider the discipline of proxemics (Hall,

1963), the science of interpersonal space, for guidance in user-computer spaces.

SUMMARY

Aided by advancing technology and spurred both by the need for depicting increasing amounts

of data and functions and by market interest, user interface design is taking on more spatial char-

acteristics. User interface graphic designers will need to coordinate, unify, and optimize for com-

munication effectiveness a very broad, deep hierarchy of spatial attributes for every component of
the interface. Lessons can be learned by examining the theory and practice of professionals in

other disciplines who have also worked with complex spatial structures, both as matters of geome-

try and as cultural artifacts. The reading list is intended as an initial guide to the literature of these

allied disciplines. The scope and rate of change within user interface design promises to offer an

exciting opportunity and test of skill for the human mind in shaping three-dimensional forms for
pictorial communication.
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Medical illustration is a field of visual communication with a long history. Leonardo

DaVinci, inventor, scientist, and illustrator, is perhaps the best known pioneer of medical art, but
many other individuals, such as the famous anatomist Vesalius, also contributed to the develop-

ment of the profession. Understandably, many factors have impacted the field throughout its

growth, but the primary goal of a medical artist-to visually explain information about the health

sciences-has remained unchanged. Other goals such as marketing and advertising of products are

subsidiary to this central objective of presenting educational imagery to health science professionals

and patients alike.

Traditional medical illustrations such as the one shown in figure 1 are static, two-

dimensional, printed images--highly realistic depictions of the gross morphology of anatomical
structures (Netter, 1948; Pernkopf, 1963; The Urban and Schwarzenberg Collection of Medical

Illustrations Since 1896, 1977). Coincidental with technological advances in both medicine and

image production, however, is the expansion of the role of medical art. Today medicine requires

the visualization of structures and processes that have never before been seen. Complex three-

dimensional spatial relationships require interpretation from two-dimensional diagnostic imagery.

Pictures that move in real time have become clinical and research tools for physicians.

Medical artists are uniquely qualified to plan and produce visual displays for use in health
communication. Basic science courses taken within a medical school curriculum prepare them to

be content experts. Prerequisite life drawing, painting, color theory, graphic design and other fine

art courses, and subsequent graduate coursework including anatomical drawing and surgical illus-

tration imbue artistic skills. Using instructional design theory, artists plan goals and objectives,

perform critical analyses of task and learning performance, and evaluate products and procedures.

Medical artists are media technologists as well. They must choose from a plethora of media the

appropriate mode of presentation for the specific content being represented. The objective in
medical art is to incorporate new technologies as both production tools and modes of f'mal pres-

entation. The artists are therefore knowledgeable of a wide variety of media, including printed
images in line, continuous tone or color; projection media such as slides, video, film, and anima-

tion; computer graphics; and three-dimensional models and simulators.

In addition to formal instruction, medical artists possess those abilities often attributed to the

mystical realm of art. Perhaps because of their comprehensive knowledge base relevant to prob-

lems of visual representation, for artists an iterative problem-solving process often becomes auto-

matic to the point of appearing to be intuitive. Previsualization of visual solutions by the artist

allows exploration to occur in an effective, if not well-understood, manner. For example, Ansel

Adams, renowned for his development of the zone system in black and white photography, was

consciously aware of the limitations of film for representing the range of values we are able to see

with the human eye. He could, however, mentally image how a landscape would be recorded by

film, and thereby "see" a predictable translation to guide him. In a similar manner, medical illus-

trators use a combination of factual, theoretical and artistic knowledge to previsualize.
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Clientsandcontentexpertsneedto be involvedin theprocessof preparingvisuals,butmany
importantproductiondecisionspertainingtothefinal appearanceof theimagearesolelythedomain
of theartist. Artistsareableto identify andmanipulatemanyvariableswithpredictableresultsand
recognizethecontributionsof unpredictable"happyaccidents."

Themostfundamentaldecisionsuponinitiatingadrawinginvolvecharacteristicsof thelight
sourceportrayed.Theimportanceof directionof a light sourceis well documented.Perceptual
psychologistshavedemonstratedthatanupper-leftlight sourceis generallythedefaultassumption
for aviewer,butdirectionisonly onevariableto beconsidered.Two otherimportantconsidera-
tionsarecolor temperatureandintensity,aseachof theseconveyinformationaboutspatialrela-
tionshipsandcanbeusedto invokeaffectivereactions.Theartistsometimesneedsto inventthe
light source,creatinganunrealitythatis moreeffectivethanreality. Forexample,operatingroom
lightsprovideverydiffuse,evenlighting of thesurgicalfield to avoidfatigueto thesurgeon's
eyes;thereforephotographsappearto beflat spatially.Surgicalillustratorsenhancetheimpression
of spaceby creatinganimaginary,directionallight source,with stronghighlightsandcastshad-
ows. Manyotherartisticdecisions,suchasviewerstationpoint,composition,andcolorharmony,
all impactthefinal results,andshouldbeenmastedto professionalcommunicatorsandqualified
artists.

Themedicalartistembodiesalink betweenthetechnicalandaestheticrealmsof visualcom-
munication.Theskillsexemplifiedbymedicalartistsfor thehealthsciencescommunitycan
demonstrateanappropriatemodelfor otherfieldsthatneedtomakejudgmentsaboutvisualsfrom a
holisticviewpoint.

Theimportanceof aqualifiedconsultantandproducerof visualscannotbeoveremphasized.
In theirreportto theNationalScienceFoundation("Visualizationin ScientificComputing,"
McCormick,DeFantiandBrown(1987))commentthat"Becauseof inadequatevisualizationtools,
usersfrom industry,universities,medicine,andgovernmentarelargelyunableto comprehendthe
flood of dataproducedby contemporarysourcessuchassupercomputers,satellites,spacecraft,
andmedicalscanners.Today'sdatasourcesaresuchfire hosesof informationthatall wecando is
warehousethenumberstheygenerate,andthereis everyindicationthatthenumberof sourceswill
multiply." Theauthorssuggestthatinteractivegraphicsarethebestavailablesolutionto managing
thisinformationdeluge.Theygoon to recommendthatinterdisciplinaryteamsof computerscien-
tists,engineers,cognitivescientists,systemssupportpersonnel,andartistsbeenlistedto attackthe
visualizationchallenge.

Oneinevitablequestionfor all typesof pictorialdisplaysishowrealisticshouldtheimagebe?
Muchdebateexistsasto theappropriateamountof realismnecessaryto includein differenttypes
of visuals. Researchof therealismcontinuumandits effecton learninghasnot, however,estab-
lishedusableguidelinesto beimplemented.Thecurrenttrendineducationalresourcesis toward
editingof informationwithin picturesto amorediagrammaticstyle,whereaseffortsto improve
simulatorsaretowardmaximizingrealism. Interactivedisplaysmayprovetobeareasonablesolu-
tion to theeditingquestionby providinguserstheflexibility of controllingthevariableof realism
anddetail themselves.In reality,however,theissueof optimallevelsof detail toincludein apar-
ticularillustrationismostoftensettledbybudgetaryconstraintsor subjectiveclientpreferences.
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Medicalillustratorsareinvolvedwith thedevelopmentof interactive visual displays for three
different, but not discrete, functions: as educational materials, as clinical and research tools, and as

databases of standard imagery used to produce visuals.

Health education visuals are required for a diverse audience including patients, medical stu-

dents in training, and experienced surgeons. The information depicted may be factual, theoretical,

abstract, or motor-skill training. Patient simulators are, for example, important methods for train-

ing manual skills because they offer the greatest breadth of learning experience with no risk of

damage or discomfort to the patient. A successful simulator should provide a high degree of pro-
cedural realism. A three-dimensional model (fig. 2) used to train personnel in the procedure for

fetal monitoring exemplifies a traditional type of interactive teaching display.

Monitoring a fetal heart rate during labor requires the insertion of an intra-uterine pressure

catheter and the attachment of a scalp electrode to the baby. Placement of the instruments is critical

since misapplication can result in devastating damage to the newborn. Correct positioning of the

instruments requires the technician to palpate anatomical landmarks and visualize spatial
relationships.

To satisfy these requirements in the simulator, medical sculptor Ray Evenhouse mimics soft
and bony tissues with layers of synthetic materials. The structures are made from casts of bones

and sculptures of soft tissues based on morphometric data. The completed simulator consists of a

fetal head that is positioned within the maternal torso by an instructor in a variety of presentations.

Visual and tactile realism is essential so that underlying structures such as the anterior and posterior

fontanelles and facial features can be palpated to orient the trainee. In addition, the motivational
factor induced by a highly aesthetic simulator contributes to the overall success of the model

(Evenhouse and McConathy, 1989).

A quite different simulation is represented by an electronic textbook recently developed by

Doyle (O'Morchoe and O'Morchoe, 1987) as a tool for teaching histology, the study of cell and

tissue biology, to medical students (fig. 3). This prototype system operates on an IBM PC micro-
computer fitted with both a high-resolution graphics display, capable of 256 on-screen colors, and

a separate monochrome text display. The textbook uses the interactive digital video (IDV)

interface, a device-independent process for user interaction with digital video images.

A student operating the system is presented with a menu from which a particular histological

section is chosen for viewing. A realistic video image of that section is then called up from the

disk and displayed on the color monitor. The student is then able to interact directly with the video

image by pointing to an area of interest with a mouse and pressing a button. The system responds

by displaying descriptive test on the monochrome monitor, which explains the pertinent facts about

that particular image feature. For example, if the student points to a muscle cell within an image of

heart tissue, the text which is displayed on the monochrome monitor explains in detail the salient

morphological characteristics of cardiac muscle, how this type of muscle tissue compares to skele-
tal and smooth muscle, and so on. This arias is an attempt to create an entirely intuitive user inter-

face for the student. A specific goal was to eliminate the distraction of labeling every important

histological structure on the screen simultaneously while still allowing the user instant access to the
exact conceptual elaboration which he or she desires.

It is possible to reverse the above-mentioned situation so that the student can type in a struc-

ture name on the keyboard and the system then displays an image with the pertinent structure
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highlighted.TheIDV interfacecanalsobeusedtocorrelateone image to another so that the
selection of a histological structure results in the display of either higher or lower magnification

views of that particular image. This allows the student to zoom in from an orienting, low-

magnification, light microscopic view, through consecutive higher-magnification images, all the

way to the electron microscopic level and back again. The possibility is also being investigated of

using a speech synthesizer for text output as well as a voice-recognition system for user text

queries.

These examples highlight the range of possibilities for teaching with interactive visuals. The

opportunities for students to learn in real time, encounter variations, self-edit information, and

adopt learning strategies best suited to their own needs represent a major advancement in
education.

Another burgeoning area of interactive displays involves visuals as clinical and research
tools. The advent of computer technology in combination with new technologies of diagnostic

imaging has provided physicians and researchers new methods of visualization.

The imaging modalities of computed transmission and emission tomography, magnetic reso-

nance imaging and ultrasound are revolutionizing medicine. "Improved 3D visualization tech-
niques are essential for the comprehension of complex spatial and, in some cases, temporal rela-

tionships between anatomical features within and across these imaging modalities" (Computer

Graphics, 1987). For example, using the computer a plastic surgeon can modify a patient's fea-
tures to simulate postoperative results. Such manipulation, based on each patient's diagnostic

imagery, can be a powerful tool to help plan a surgery and also allay a patient's anxiety about the

outcome. Another emerging application of computer visualization is the custom design of

orthopedic reconstructions such as knee replacements through noninvasive 3D imaging.

Such developments in diagnostic imagery dictate a radical departure from conventional meth-
ods of teaching and communicating anatomical information. Medicine has traditionally relied on

frontal, anterior-posterior views, but this flattened perspective is not sufficient. The explosion of

diagnostic imagery has shattered conventions of orientation and requires visualization of oblique,

cross-sectional and other unique viewpoints. Using computer-aided design software, students can

rotate structures to improve their spatial understanding.

These major changes in spatial representation require heightened attention to fundamental

aspects of preparing visuals, such as orienting the viewer. The impression of space can be
enhanced by unusual oblique views, but is useful only when the user is properly oriented. Failure

to establish the viewer's orientation seriously compromises the communication of the visual, yet

we continue to see slides flashed with little or no orienting landmarks or graphic elements. This

leaves the viewer with orientation as a first cognitive task rather than proceeding to the intended

task of information processing.

Research concerning orientation and mental rotation of figures has provided a body of theory

which can potentially be used to solve questions of orientation; however, application of these theo-

ries is still sorely lacking. In surgical illustration it is unclear whether it is better to depict a proce-

dure from the surgeon's point of view during the surgery, or whether a view of the patient in

anatomical position (upright, anterior-posterior orientation) is best.

23-4



Anotherproblemthatplaguesvisualcommunicatorsis a lackof standardizationof bothver-
bal andvisualsymbols.Specialtyareasoftendeveloprepresentationsthatarelearnedby users
over time,butcomprehensive"dictionaries"of graphicelementswouldbehelpful to assistthenew
learnerandto assureconsensusof interpretation.

Standardizationof graphicelementswouldalsomaximizetheamountof information which
could be encoded into graphic symbols. For example, illustrators often employ arrows as devices

for portraying the idea of direction, movement, or force. What do different types of arrows mean?
In medical art there is a tendency to use simple, two-dimensional arrows to imply direction of
movement. A three-dimensional arrow can also encode information about force, and can be made

more or less monumental to correlate to the amount of force produced. Arrows drawn in perspec-

fives that seem to pierce space can give information about complicated movements such as spirals

or rotations. Unfortunately, no standardized vocabulary for graphic elements exists for medical art

or for most specialties.

Standardization of data used to construct images would also be a boon to improving accuracy

and production efficiency. At present, as each artist begins an illustration he or she must subjec-
tively synthesize information from many resources. A database of morphometric information

would assist the artist by providing measurements for an idealized form that can be manipulated,

rotated, and embellished using the computer. Following the approach of human factors specialists

in the design of tools and environments, the artist would have data sets of measurements to

describe the range and standard for forms. Image banks would alleviate the necessity of "rein-

venting the wheel" (or kidney, brain, or heart in the case of medical art!) every time a new illus-

tration is requisitioned. This way of thinking is somewhat antithetical to the traditional illustrator's

mode of thinking, in which the product of artistic labor is considered to be a personal, unique
interpretation of the subject matter--a problem that may impede acceptance of stock supplies of

imagery.

A project that addresses the issues raised thus far is under way at the Department of Bio-

medical Visualization at the University of Illinois at Chicago. Aptly named The DaVinci Project,

the interdisciplinary research group, consisting of experts from engineering, institutional com-

puting, educational development, supercomputing, urban planning, architecture, medical imaging,
and medical illustration, aims to create a RESOURCE CENTER FOR ANATOMICAL IMAGING.

Using methods traditionally employed at a microscopic level, the DaVinci Project will establish a

comprehensive, accurate description of standard human gross anatomy and its development

through time, based on quantitative and qualitative data gathered from diagnostic images and actual

specimens (fig. 4). Morphometric analysis and stereology will be used to develop a computer-

based stereoanthropomorphic database which can be manipulated, analyzed, and enhanced for

various visualization purposes. The database will benefit diverse fields including medical
education, bioengineering, anatomical simulator design, forensic science, biological process

simulation, surgical instrument design, pharmaceutical research and development, military

technology, sports equipment design, and missing persons research.

The DaVinci Project will contribute to teaching efforts, provide a research tool to clinicians
and basic scientists, serve as a production tool for artists, integrate diagnostic imagery, and utilize

computer technology to standardize and visualize information. Such an endeavor summarily

represents the trend toward approaching visual information interdisciplinafily, interactively, and

electronically.
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Figure 1.- Traditional medical illustration by Deirdre McConathy, depicting gross morphology of a
cadaver heart.
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Figure 2.- Interactive patient simulator developed by Evenhouse used to teach instrumentation for

fetal monitoring procedure.
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Figure 3.-Electronic textbook developed by Doyle (1987) used to teach medical students about
cells and tissues.
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Figure 4.- Representation of the DaVinci Project's aim to use two-dimensional anatomical imaging

data to produce a serially reconstructed three-dimensional computer database of standard

anatomy.
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THE INTERACTIVE DIGITAL VIDEO INTERFACE

Michael D. Doyle

The University of Illinois College of Medicine at Urbana

Chicago and Urbana, Illinois

A commonly heard complaint in the computer-oriented trade journals is that current hard-

ware technology is progressing so quickly that software developers cannot keep up. As a result, it

seems that available applications are always several generations behind in implementing current

hardware capabilities. A good example of this phenomenon can be seen in the field of microcom-

puter graphics.

Today's price/performance ratio is such that an affordable personal computer for a

sophisticated user may contain a 32-bit microprocessor operating in the range of 3-4 million
instructions per second, an advanced graphics controller capable of 1024x1024 resolution with

256 colors simultaneously displayable from a palette of 16 million possibilities, 2-16 megabytes of

RAM and an optical storage device capable of storing 600-800 megabytes of data. Such a system

can be purchased today for a price of $10,000 to $15,000. The cost for a similarly configured

machine 4 years from now can be expected to drop to the $3000-$4000 range. The physical
dimensions of such a machine may shrink from desktop proportions to briefcase size, or smaller.

Such computer systems have the potential for effective storage of, and easy access to,
massive amounts of textual and image information. A single optical disk can store all of the text

and images contained within a typical set of encyclopedias while providing relatively quick access

to any particular information of interest. Optical storage media will most probably supplant many

of today's printed forms of publishing.

To effectively exploit the advantages of new mechanisms of information storage and

retrieval, new approaches must be made towards incorporating existing programs as well as devel-

oping entirely new applications. There exists a great need to integrate more sophisticated graphics
into applications and to take a wider view of how that integration can take form.

A particular area of need is the correlation of discrete image elements to textual information.

The interactive digital video 0DV) interface embodies a new concept in software design which

addresses these needs. The IDV interface is a patented device- and language-independent process

for identifying unique image features on a digital video display and which allows a number of

different processes to be keyed to that identification. Its specific capabilities include the correlation

of discrete image elements to relevant text information and the correlation of these image features to

other images as well as to program control mechanisms (fig. 1). Very sophisticated

interrelationships can be set up between images, text and program control mechanisms using this

process.

I originally developed this process during the design of a microcomputer-based interactive

atlas of medical histology (histology is the study of microscopic anatomy). Using this system, a

medical student can call up from a menu a microscopic image from one of the body's organ or tis-

sue systems. This image is then displayed on the video monitor with no labels or identifying

structure names shown. The student can then use a mouse to indicate a particular image area that
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heor shewouldlike moreinformationabout.Clickingoneof themousebuttonscausesthe
computerto displayascreenof explanatorytext concerningtheparticularhistologicalstructure
indicated(e.g.,anindividualcell in animageof agroupof cells).Pressingtheothermousebutton
wouldcausethedisplayof ahigher-magnificationimageof thatimageelement(histologicalstruc-
ture)selected.Thestudentis thenfreetointeractwith thishigher-magnificationimagetoobtain
furthertextualexplanationor to seeevenhighermagnificationviews. It shouldbenotedherethat
this"zooming"capabilitydoesnotmerelyinvolvethehigher-magnificationdisplayof thesame
digital image(with theresultantlossof resolution),butrathercausesthedisplayof anentirelydif-
ferentimagewith nodecayin resolutionor imagequality. Forexample,if theon-screenimage
wasof a 1000Xlight microscopicview of sometissue,selectingthe"zoom"featurewouldcause
thedisplayof alow-magnification(3500X)electronmicroscopicimageof thatparticulartypeof
structure.Thesecorrelationscanbecausedto runin reverse,sothatthestudentcouldzoomfrom
highmagnificationsto lowermagnificationviewsor heor shecouldenterthenameof astructure
from thekeyboardwith theresultantdisplayof animagecontainingthehighlightedstructureon the
videodisplay.

Imagedatabasesadaptedfor theIDV interfaceareextremelymemory-efficient.Thedata
storageloadfor asingleimageandcorrelationmechanismis lessthan1%largerthantheoriginal
compressedimagefile beforeadaptationto thesystem.It is thereforepracticalto includeall of the
1200or so imagesneededfor acompletehistologyatlasonasingleCD-Romdisk. Another
advantageto theprocessis thatit runsveryquickly, andthisspeedis notaffectedby theresolution
of theimage. The histologyatlasrunsveryfastonanunadornedIBM PC(4.77Mhz) with the
appropriategraphicscontrolleranddiskstoragedevice. Althoughtheimagesin theatlasareonly
512x484pixels in resolution,theprogramwouldachievethefeatureidentificationjustasquickly if
theimageresolutionwere4000x4000pixels.

A specificobjectivein thedevelopment of the Interactive Arias of Histology was to elimi-

nate the distraction of having all of the important discrete elements within an image labeled on the

screen and yet maintain the capability for immediate access to the exact descriptive textual informa-
tion which the student desires.

In some situations, computer graphic images can contain so much information that it is not

practical or not necessary to see all of the text-based information relevant to a particular image.

Such a case exists in the graphic display of supercomputer-level image output. The IDV interface

could be of great practical value in allowing the scientist to interact directly with the graphic display

of, for example, a complex biological process simulation. A custom-designed interface could
allow the researcher direct and immediate control over program flow for a simulation while it is

executing, or immediate textual elaboration on an interesting feature of the simulation output
display.

Head-up displays are currently of great interest in the aerospace industry. These displays

have the effect of placing the user within the virtual environment of the computer image. A great

deal of research is being clone towards making the user interface for such a display as intuitive as

possible. Techniques such as retinal scanning are being investigated as possible means to achieve

a very natural-feeling way to specify a location within the display. The IDV interface would be an

effective way to correlate this intuitive locator mechanism to desired relevant computer responses.

Other possible applications for the process are numerous: computer-aided education for

information-intensive fields such as medicine or the military, for the earliest educational levels or
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for remedialor special education; image-based reference works such as atlases, catalogs, maps or
navigation systems; cognitive rehabilitation systems, for head injury or Alzheimer's patients, to

build associative relationships and still allow a controllable degree of freedom of interaction; inter-

active art displays; foreign language education systems; and entertainment programs or games.

The IDV interface is an attempt to redefine the role that computer graphic display images

play in the function and purpose of application programs. It extends the concept of interaction to

allow a user to interface directly with an image and not be distracted by unwanted information or

the mechanics of computer operation. Although my own interests in developing applications with

this process are limited to educational computing, it is my hope that others will undertake to

explore its integration into the myriad of possible interactive graphic applications for which it is so

aptly suited.
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Pending publication in Perception and Psychophysics,

the paper "Efficiency of Graphical Perception"

by Gordon E. Legge, Yuanchao Gu, and Andrew Luebker

has been withdrawn from this Proceedings 1

1If copyright permission is obtained before printing, we will add this paper as an addendum.
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DISPLAYS, INSTRUMENTS, AND THE MULTI-DIMENSIONAL

WORLD OF CARTOGRAPHY

George F. McCleary, Jr.

Department of Geography
University of Kansas

Lawrence, Kansas

Cartographers are creators and purveyors of maps. Maps are representations of space--geo-

graphical images of the environment. Maps organize spatial information for convenience, particu-

larly for use in performing tasks which involve the environment. There are many different kinds

of maps, and there are as many different uses of maps as there are spatial problems to be solved.

MAPS AND THE DISPLAY-INTRUMENT DICHOTOMY

The many different uses of maps can be categorized into two groups. Some maps are used

passively--they display information. They are subjected in some cases to only a glance, a moment

of study, and little more; in some situations (although the author would no doubt prefer otherwise)

they seem to be ignored. Information obtained from maps used as displays is gained by visualiza-

tion-the eye-brain system processes the display without assistance from any device (e.g., ruler,
planimeter).

Other maps, in order to fulfill their missions, must be studied, analyzed or measured. They
are used as instruments. This is clearly the case with maps used in sea or air navigation or those

used to carry out engineering operations. Map use in situations like these is an active process and

the map cannot be ignored--it is used with precision, and the efficiency of performance of the task

in which it is used depends, sometimes entirely, on the accurate use of the map.

The two parts of figure 1 indicate these extremes: A simple location map from a newspaper

contrasts in many ways with the level of detail and the utility of the navigation chart (here shown
not only with water depths and graticule marks, but also with electronic navigation system infor-

mation). While these illustrations make this dichotomy obvious, this difference in approach to

examining the uses of maps and to the understanding of the cartographic process presents a

significant opportunity for clarifying concepts and procedures which have tended to be passed over
by cartographers.

The approach taken here to the display-instrument dichotomy is not contradictory to that set

forth by Ellis (1987), but it departs from his perspective in two ways. First, it is applied only to
maps. Second, the focus is on the use of maps--not their creation.

Ellis considers all maps to be instruments, but there are some maps which must clearly be

displays, even from his perspective. The very large paintings by Jasper Johns come immediately

to mind (Crichton, 1977), along with those maps used quite often as a major element of the mes-

sage in either advertisements or portraits--in these cases, the map serves a simple (often propa-

gandistic) role, for it lends worldly credibility to the person or situation involved.

26-1



Therepresentationof the landsurfaceprovidesanexcellentillustrationof thedisplay-
instrumentdichotomyin mapcreationanduse.To createanymapaconsiderableamountof datais
required;for a longtimetherewerenosignificantdataavailabletocreateadetailedmapof theland
surface.At theoutsettherewasonlytherelativelocationof thefeatureandsomecharacterization
of it (e.g.,"over there,a hill"). At thispoint,therewasno realneedfor amoredetaileddescrip-
tion. As scienceandtechnologydeveloped,it becamepossibleandnecessary,first, to locate
thingsmoreprecisely(thegraticuleandothercoordinatereferencesystems,aswell ashorizontal
andverticaldatumswereestablished)and,second,to describethesurfaceof thelandin moresys-
tematicterms(verbalcharacterizationsyieldedto graphicsymbolsin amapformat,thento repre-
sentationsof slopeandfinally, with theavailabilityof data,to themappingof elevationusingcon-
tours) (Hodgkiss,1981;Harvey,1980).Thesequenceof illustrationsin figure 2providessome
highpointsin thisevolution.

Theinventoryof techniquespresentedhereendsnotwith thecontour--an instrument for

land surface representation--but with a shaded relief map. While the industrial revolution and the

emergence of industries which required large quantities of natural resources needed the kind of
information about the land surface that only contours could provide, another aspect of the land

surface rose to importance. The contour provides a representation of the land surface suitable for
measurement--it is an instrument, and it is a very poor device for visualization--it does not create

a good display. It is difficult, even impossible, for even a sophisticated map reader to gain a good

overall image of the landscape from a topographic map. Therefore, in a number of different map

use situations where visualization of the characteristics of the land surface is important, cartogra-

phers have employed shaded relief methods on their maps.

The problems associated with land surface representation illustrate nicely the interrelation-

ships among a culture, its science and technology, and the maps which were developed. Different

cultures and different times generate different needs for maps, and cartographers have responded to

these needs in different ways.

Consider the problem of accomplishing a single task--accurate sea navigation. What form of
map---instrument--was and is available? At the outset there were probably no maps (as we

understand the concept of the map as a two-dimensional representation); there were only verbal (at

ftrst oral and then, later, written) instructions. These yielded to the portolan charts, which codified

the relationship between the magnetic "environment" and the land-seascape (given an origin and a

destination, there is a straight-line magnetic course between them). While determining latitude has

been understood for several thousand years, celestial navigation requires an accurate measurement

of time to determine longitude--and the whole process required two instruments: the chronometer

and the cylindrical conformal projection. While the former is an eighteenth century invention

(Harrison won the prize awarded for creating the first accurate nautical timepiece, and LeRoy and

Earnshaw made major innovations which made the chronometer more reliable and inexpensive; see

Brown, 1949, and Bowditch, 1966), the latter was first used by Mercator in 1569 (and

mathematically described by Wright in 1599; an earlier use, by Etzlaub in 1511, is much less

notorious than that by Mercator (Maling, 1973)). Other navigation instruments came much later,

including, for example, the electronic navigation LORAN system, and the inertial guidance and
satellite-based systems in use today (Monmonier, 1985).

This sequence of development is presented in figure 3: Descriptive guide, portolan chart,

Mercator projection, LORAN network, and so on. The final element in this sequence of instru-

ments is a display: a map from an advertisement for a cruise. The sequence of development in
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navigation,piloting,deadreckoning,celestialnavigation,electronicnavigation,and--for the
tourist--vicarious navigation,is mirroredby asequenceof instruments(andonedisplay).

CATEGORIES OF MAP USE

While there are many different classification systems which have been created for maps, none

take advantage of the display-instrument dichotomy. In terms of map use, this dichotomy can be

paired with another to create a four-category system of map use. Maps are used either for naviga-
tion or for environmental management. One either uses a map to go from one place to another, or

the map is employed to provide information about the environment, either for the sake of the
information itself ("this map shows the major battles in the European theater in World War II") or

so that the information can be used to organize or modify the environment (a map of election

precincts or a house plan).

In most cases the navigation map is an instrument. In advertisements, travel guides, and the

like, however, it is used as a display. An increasing number of maps are being produced as dis-

plays for environmental management; these occur not only in the news media, but also in profes-

sional and educational journals and books. Few, if any, of these require the analytical and mea-

surement capabilities of the engineer's plan or the architect's drawing. As displays, these maps

require the properties necessary for effective visualization. In such a case, the focus of the map
creation process shifts from processes which are founded principally on geometric and geographic

precision to those which accommodate the human eye-brain (visual information processing)

system.

These four map use categories are compared in figure 4.

THE CHARACTERISTICS OF MAPS

Maps have many characteristics, but all fall into two categories: They are either aspects of the

structure of the map---those things associated with the scale of the map and its "projection," or they

are related to the content of the matt--the graphic symbols which represent the features of the

environment portrayed.

Structure: Space and its Transformations

The literature on map projections is extensive; here we find problems that have confounded

and captivated the minds of cartographers for centuries. One will f'md in any single source only a

few of "the answers," for as the uses of maps are very different, so too are the projections which

have been used (and misused) for these different requirements. Some fundamental concepts will,

however, enable us to resolve the projection problems in terms of the display-instrument

dichotomy.

The focus of the cartographic interest in projections has been on the transformation of the

spherical earth to the plane. Here, after reduction to some particular scale, the primary
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considerationsaretheproperties of the different transformations. For navigation at the instrument

level, the Mercator projection comes immediately to mind. There are, of course, other projections

used for navigation, and most of these are, like the Mercator, conformal; i.e., all angles are repre-

sented correctly. The Mercator projection is unique, however, for it is only on this projection that

all rhumb lines (lines of constant compass direction) are shown as straight lines--an extraordinar-

ily useful situation for a navigator.

There are, however, a number of other facets of the Mercator projection which make it very

important to this discussion. First, it does not show great circles as straight lines (this is the prop-

erty of the gnomonic projection---the gnomonic is the traditional companion to the Mercator; on it

all straight lines are great circles--one plots the great circle route between two points, then com-

piles this path on the Mercator as a set of rhumb lines which are used in the navigation process.)
Second, in the transformation of the spherical surface which is required to develop the property of

conformality, the Mercator projection exaggerates the sizes of areas; this is a problem which has

caused great difficulty when this projection has been used for maps of the world designed to dis-

play statistical data. It is a problem which has existed for several hundred years; like the durability
of Greek scientific concepts in the Renaissance, it is the Mercator image of the world which has

become the consensual view of people around the world. What General Frederick Morgan recog-

nized as a key problem in gaining American support for Operation OVERLORD (Morgan, 1950)

(fig. 5) has been documented in depressing detail by Saarinen (1987) (fig. 6).

The solution to the display problem is simple: If you are to make a map of the surface of the

Earth, a display to provide information for visualization about some aspect of our environment, use

an equivalent (equal area) projection. Here areas on the surface are shown in correct proportion.

This has been done--and done again--and again. Unlike the Mercator, the cylindrical conformal
projection, there is no unique solution for the cylindrical equivalent projection--there are a variety

of possibilities. Further, when one relaxes a constraint on the transformation process, then an

even wider array of possibilities emerges. While many have "solved" the problem once, others

have created a series of solutions, all unique and all useful. None of these has, however, achieved

universal acceptance. Why? None of them looks enough like the Mercator--the consensual--
image of the world.

There are many equal area projections (fig. 7), and there are a growing number of compro-
mises: projections which are neither conformal, not the Mercator, nor equivalent--just something

between these two, with none of the properties of either. The compromise by Miller is widely

used (Snyder, 1982)--it is not equal area, but it has a lot of Mercator-like properties. The one

developed by Robinson (1974), and termed "orthophanic" (it "looks correct"), is based on several

decades of study of the problem, and the author recognized (and published) its limitations. This is

in marked contrast to the campaign mounted by Peters (1983) in support of his equal area projec-

tion-the list of "fidelities" associated with it are an insult to those who understand, but a great lure
to those who seek a single solution to a problem which has none.

The final event in the organization of the structure of maps is the work with "cartograms"--
topological transformations of geographic space on the basis of some set of statistical data. The

sizes of areas (countries, states, etc.) are functions of their populations, economic level, or some

other statistical measure (Tobler, 1963). Cartograms of this type are a recent invention (Raisz,

1934), but their navigational counterparts date to the Crusades. Automobile strip maps, the dis-

torted maps used by railroads (and many rapid transit systems), and the diagrammatic maps
employed by airlines are not only useful, but they are often much easier to understand (be it to
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visualizeor to measure)thantheirgeographicallycorrectcounterparts.Theyrepresent,aswell, a
sophisticationin thehandlingof mapstructurewell beyondthenormaltransformations
(projections)generallyemployed.Theearliestcartograms--mapsbasedonastructureof a
conceptualspace--aretheT-in-O maps.Thesemedievalmappae mundi, generally considered as

perpetrators of myth and dogma, simply reflect a view of the world organized more on the basis of

theology than geography (Wilford, 1981) (fig. 8).

In handling the structure of a map (as either a maker or a user), one must turn to fundamen-

tals in order to make an appropriate decision. Choose first the projection which has the properties

necessary for the use of the map (conformal for navigation and surveying, equivalent for visu-
alization of statistical information, or one of many other properties--such as equidistance if the

use requires it). Given the important property, then select the least distorted version possible

(Robinson et al., 1984).

Content: Data and Their Transformations

Spatial---environmental--information can be conveyed in a number of different ways. One

can use words, either written or spoken. Numerical data can be employed, and one is often con-

fronted with great quantities of tabular data, all organized in a form more appropriate for an
accountant than for an environmental analyst. These forms, among others, are found in the cate-

gories of what Moellering (1980) has called "virtual maps." In some cases verbal or numerical

environmental descriptions--maps--are more effective for handling a task than "a real map"--a

graphic description. In most situations, however, maps are much more effective for representing

the environment, either for display or for use in measurement.

The question which concerns many people, however, is just how effective are these graphic
displays. Are they understood more accurately than the verbal essay or the statistical table? While

there is a legacy of nearly two centuries of "thematic maps" (Robinson, 1982), it has only been in

the last half century that serious consideration has been given to the problems associated with

reading--visualizing--these maps. It was only in 1967 that Jacques Bertin described and explored

the six visual variables, the graphic vocabulary (Bertin's work was made available in English in

1983). While it is possible in 1988 to present information using graphic devices that provide a

reasonable expectation that the message will be communicated appropriately, it is clear that other
forms of presentation will fail to achieve the goal.

The six visual variables are illustrated in the ways that they can be used to represent point,

line, and area data in figure 9.

It is not possible here to analyze the entire situation, but the use of symbol size (graduated
circles) is illustrated in figure 10. In the first map, the sizes of the circles are directly proportional

to the populations of the Kansas and Missouri counties which they represent; a circle representing

10,000 people is twice the size of a circle representing 5,000 people, and a tenth the size of one

representing 100,000 people.

A large number of studies have shown that the human eye-brain (visualization) system does

not respond to these circles in the same way that a mathematical measuring device would; it is clear

that circle size differences are underestimated (Stevens, 1975). The second map compensates for

this characteristic of the human system; the size of the smallest circle is the same here as on the first
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map,butall othersizeshavebeenrescaledtoovercomethesizedifferenceunderestimation.Note
thatthelargestcirclesaresignificantlylargerherethanon thef'trstmap;themaphasbeendevel-
opedwith thehumaneye-brainsystemasthefocus--thenumericaldatahavebeentransformedto a
visualserieswhich shouldpresenttheinformationcorrectlyto mostmapreaders(McCleary,
1983).

This is ashort,andhighlysimplified,explanationof averycomplexproblem. To dojustice
toit, oneneedsto exploreeachvisualvariable,aloneandin combinationandcontext. Eachadded
factormakesthevisualizationsituationmorecomplex.In thesameway thattheadditionof an
adjectiveasamodifier to anounchangestheunderstandingof thenoun(andtheadditionof an
adverbmodifiestheideaevenfurther),theuseof visualvariablesin combinationchangesthemes-
sageto themapuser.Whena symbolis placedin acontext,it--like thenounphraseplacedin a
sentenceor aparagraph--mayassumeadifferentmeaning.Thereis agreatamountof researchto
bedonebeforetherewill beaclearunderstandingof all theprocessesandresponsesto problemsin
thevisualizationof maps.Achievinganunderstandingof thegraphicvocabularyandadaptingthis
knowledgeto themanyvariationsin graphicdisplaysshouldnot,however,dissuadepeoplefrom
developingandusinginnovativemethodsfor information.Whetherit befor adisplayor for an
instrument,somenewapproachmightelicit moreappropriateuserbehaviorfor aparticulartask
thanadeviceor procedurewhichhasalegacyof extensiveuse.

If onelearnsto writebetterbyreadingextensively,onewill for certainbebetterpreparedto
presentdataonmapsif heor she"reads"widely,examiningmapsin manydifferentplaces,in
manydifferentforms,for manydifferentpurposes.

To thisend,thereadermightexploretheworkpresentedin severalvolumes.Thestatistical
textbookby SchmidandSchmid(1979)providesatraditionalbenchmarkapproach.Fromthe
cartographicperspective,Dickinson(1973)focusesdirectlyon themergerof statisticsandmaps.
MonkhouseandWilkinson (1971),on theotherhand,provideanin-depthexplorationof mapping
techniques.Theencyclopedicapproachherecontrastsgreatlywith thetechnicalapproachusedin
nearlyall of theothercartographictextbooksavailable;see,for example,Elements of Cartography
(Robinson et al., 1984).

Lockwood (1969) ranges among a wide variety of maps and graphs, while Fisher (1983)
focuses on fundamental facets of the mapping problem. Herdeg (1982) has collected a wide array

of material from an even wider array of resources. Southworth and Southworth (1982) focus on

maps--a "scrapbook" approach. One might accompany their exploration of these with the text on

Map Appreciation, by Monmonier and Schnell (1988); this volume focuses on types of maps.

Map Use, by Muehrcke (1986), is more concerned with process.

All of these volumes have much to recommend them; all have their liabilities. Cartography is

a field in transition. Maps are not the property of the product of the cartographer alone. In fact, as

some of these volumes indicate clearly, innovation (and the associated excitement) occurs quite

often outside the realm of the professional mapmaking clan.
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THE HUMAN, MAPS, AND BEHAVIOR

All of the discussion which has gone before has ignored a major area of activity in carto-

graphic research and instruction: cognitive mapping. Here, and in the other research areas associ-

ated with it (including environmental psychology, environmental cognition, and the like), the

attention lies clearly on the maps which are integral components of the human system. Those who

study cognitive maps are concerned with the characteristics of the maps "housed" in the mind of an

individual, with the origins of these maps, including different sources of information and the envi-
ronment, as well as with the behavior which is associated with the uses of these mental images

(Downs and Stea, 1977).

This can be explained very simply in a diagram. Humans interact with the environment; on
the basis of this interaction, information is transmitted from the environment. This information

results from direct interaction with the environment as well as from resources (of all types) which

describe the environment. This information can be said, simplistically, to form the basis for a

cognitive atlas, a collection of maps resident in the mind of the person. While the contents of the

atlas are derived principally from the environment, either directly or vicariously, the human imagi-

nation is often used in the same way that cartographers have always imaginatively filled the blank

spaces on maps (fig. 11).

The "bottom line" in this process is the human response to the environment, the behavior

which results from the application of a cognitive map in the solution of some environmental prob-
lem (McCleary, 1987). When map use is direct, and very significant to some environmental prob-

lem, the map will no doubt have a major effect on the behavior. (This has been demonstrated in a

number of ways, in problems of different types; see McCleary and Westbrook (1974) for a very

direct analysis of this system.) In many instances, however, the role of the map may be less obvi-

ous; as we have seen throughout this discussion, the impact of a map may be reflected in many
subtle ways.

CONCLUSION

The world of the cartographer is one of many dimensions and complications. There are not

only problems in understanding map smacture (projections) and content (symbols, as well as the

design of the map), but there is also a continuing series of changes in needs and requirements.

Accompanying all of this there is the ever-present change in technology--and an evolving philoso-

phy for the discipline.

What is significant here is that Ellis has provided one more way to "tie down" various parts

of the map problem: some maps are displays, while others are instruments. This has been true

from the beginning, but a clear recognition of these two major components of the cartographer's

dichotomous existence and an implementation of this view in our teaching, research, and produc-
tion-as well as in the philosophizing--should help a great deal in organizing the enterprise.
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ORfGINAL PAGE fS

OF POOR QUALITY'

DISPLAY

Figure 1.- The map as a display. Left: A newspaper map (Christian Science Monitor). The map

as an instrument. Right: A coastal chart (National Ocean Survey).
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Netherlands: Ortelius, 1570 f_,lr Switzerland:

OEiG]NAL PP.GE IS

OF POOR QUALITY

'Aarau' (1:100,000), 1936 .N_

United States: 'Holy Cross, Colo' (1:62,500), 1949 and 1951

Figure 2.- Evolution of mapping the land surface. Upper left: Ancient map from a clay tablet
(outline sketch, with mountains shown in horizontal perspective), with portion of "Sabaundia

et Burgundiae" from Abraham Ortelius, Theatrum Orbis Terrarum (a simplified oblique view

of hills and mountains). Upper right: Portion of a Swiss topographic quadrangle, using
hachures to indicate slope. Lower left: From the U.S. Geological Survey, contours used to

represent elevation--and (lower right) a shaded relief version of the same map.
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ORIGINAL PAGE IS

OF POOR QUALITY

Figure 3.- Sequence of examples showing the evolution of maps used as instruments for naviga-

tion. Upper left: Portion of a pilot's guide. Upper right: An outline sketch of a portion of
Juan de la Cosa's portolan chart. Center: An outline sketch of the Mercator world map.

Lower: Portion of a sailing chart (from the U.S. National Atlas, 1970)--with a map from an
advertisement for a Caribbean cruise.
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Figure 4.- The four categories of map use. Upper left: Environmental management, display

(U.S. Depart. of Agriculture). Upper right: Environmental management, instrument

(portion of an engineering drawing, Army Corps of Engineers). Lower left: Navigation,

display (from an advertisement by Princess Cruises). Lower right: Navigation, instrument

(portion of the "upside-down map" from New York to Florida produced for the ESSO

Company).
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ORIGINAL PAGE IS

OF POOR QUALITY

CON FORMAL PROJECTIONS,

THE GNOMONIC,
AND NAVIGATION

CONIC (Lambert), 1772 •
/ / t_ •

\

J

GNOMONIC (Known before 600 B. C.)

PLANAR (STEREOGRAPHIC, Hlpparchus), 160-125 B. C.

Figure 5.- Conformal projections and the gnomonic: instruments used for navigation.
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Slidnls'HimReflectGI'Iical Bin

Sketched tram memory, those world maps are a

sampling of the 4,277 drawn by hint-year college
studenM in S4 countries. Geographer Tlmmes F.

Saarlnen collected the maps to test mental Images
of the world- many not too accurate. Most studant_
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United States
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centered Europe; some, Asia or the Americas.

Near_y aft took the task Nrk)us/),, but a few sew
fl as a chance for humor. The mapping project was

sponsored by the International Geographical Union

and financed by the National Geographic Society.
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_)19e7 NATIONAL GEOGRAPHIC SOCIETY'

Figure 6.- A summary of key points from a research study by Thomas F. Saarinen: Mental

images of the world are generally organized very similarly, no matter where the student
lives--the basic organization is a sixteenth-century perspective: The Mercator structure of the
world.
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Sanson-Ftemsteed (SlnusoIdal), 1606

I
I

Lambert, 1772

EQUIVALENT PROJ ECTIONS
AND COMPARISONS

Motlweide, 1805

Hemmer-Altoff, 1_2

Eckert IV, 1906

Miller, 1942

JE .......
I

Robinson (orthophanlc), 1963

Behrmann, 1910

Boggs (Eumorpfllc), 1929

Peters, 1967

Figure 7.- Seven equivalent projections, from 1606 to 1929. For comparison, note the Mercator

projection, the compromises by Miller and Robinson, and the "new" (equivalent) projection

by Peters.
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Figure 8.- Topological transformations. Two road maps, three centuries apart. Maps from an
airline, a railroad line, and a rapid transportation system--with varying levels of schematic

development. Two examples of cartograms--with areas on the maps proportional to statisti-

cal values (Population by Riasz, and retail sales by Harris). The oldest printed map, a

schematic view of the world drawn originally by a seventh-century Christian scholar--a
graphic display of the world derived from the Bible.

26-17



SIZE VALUE TEXTURE DIRECTION FORM COLOR

• • O® @@/ @@/_,/ • • 0 0
oo o® o/® •. oeQ _

/©® m e

/

LINE

POINT

AREA

,,\\',,_N\_N,11agd_

,'::'":";'

Figure 9.- The visual variables (after the work of Bertin).
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Figure 10.- Two maps, prepared to represent county populations in Kansas and Missouri. The
circles on the map at the left are scaled so that their physical areas are directly proportional to

the county populations. In the map at the right, the circles have been rescaled so that their

size differences are increased, an effort to overcome the "natural" tendency of most map

readers to underestimate size differences of point symbols.
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Figure 11.- Model of the cartographic process.
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G.M. McKinnon 1 and Ron Kruk 2

CAE Electronics Ltd.

Montreal, Canada

ABSTRACT

This paper describes the development of multi-axis hand controllers for use in telemanipula-

tor systems. Experience in the control of the SRMS arm is reviewed together with subsequent

tests involving a number of simulators and configurations, including use as a side-arm flight con-

trol for helicopters. The factors affecting operator acceptability are reviewed.

INTRODUCTION

The success of in-orbit operations depends on the use of autonomous and semiautonomous

devices to perform construction, maintenance and operational tasks. While there are merits to both

fully autonomous and man-in-the-loop (or teleoperated) systems, as well as for pure extravehicular

activity (EVA), it is clear that for many tasks, at least in early stages of development, teleoperated

systems will be required.

This paper reviews some experience gained in the design of the human-machine interface for

teleoperated systems in space. A number of alternative approaches have been proposed and evalu-
ated over the course of the work described, and some basic design principles have evolved which

may appear mundane or obvious after the fact, but which nevertheless are critical and often

ignored.

One key design objective in the implementation of human-machine interfaces for space is that
of standardization. Astronauts should naturally and comfortably interpret their input motions in

terms of motions of the manipulator or task. This "transparency" is achieved by careful design to
ensure that task coordinates and views are always presented in a clear, unambiguous and logical

way, and by ensuring that standardized input devices are used in standardized modes. If conven-
tions are established and systematic modes of control are respected, training time is reduced and

effectiveness and performance are improved. The end objective in the design of displays and con-

trols for telemanipulators is to establish a "remote presence" for the operator.

THE SRMS SYSTEM

A number of manual control input devices have been used in space over the years. For the

most part these devices were designed as flight controls for the various satellites and modules

1 Director, R&D. (Dr. McKinnon died in spring of 1989.)

2 Group Leader, Human Factors.
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which have flown. The first truly robotic control device was that used on the SRMS or
CANADARM system of the Space Shuttle. The control interface in this case consisted of two

three-degree-of-freedom devices used in conjunction with a displays and controls panel, CCTV

visual feedback from cargo bay and arm-mounted cameras, augmented by limited direct viewing.

A Translational Hand Control (THC) allowed the astronaut to control the end point of the arm in

the three rectilinear degrees of freedom with the left hand, and a Rotational Hand Control (RHC)
was used in the right hand to control rotational degrees of freedom.

The THC was designed specifically for the SRMS application by CAE Electronics, while the

RHC was a modified version of the Shuttle flight control produced by Honeywell. The geometry
and overall configuration of the RHC was thus predetermined and was not matched to the task.

The device does not have the single centre of rotation which is considered by the authors to be an

advantage in generalized manipulator control. The RHC differed from the flight control version in
several ways:

• The forces and travels were modified to reflect task requirements.

Auxiliary switches and functions were changed to comply to task requirements. In fact
all auxiliary switches were located on the RHC -COARSE/VERNIER, RATE HOLD
and CAPTURE RELEASE.

A switch guard was added to CAPTURE/RELEASE to prevent inadvertent release of a
payload.

• Redundant electronics were eliminated in view of the reduced level of criticality.

The THC differed from the RHC in that it incorporated rate-dependent damping through the
use of eddy current dampers driven by planatary gears. A hand index ring was added to the THC

after initial evaluations of prototype units. The ring provided a reference for position and led to the

use of the device as a fingertip control, whereas the RHC with its larger hand grip was clearly a

hand control. Force levels and gradients on the THC were low, and the rate dependent damping
enhanced the smooth feel of the device. The x and y inputs of the THC were not true translations,

but an effort was made to optimize a linkage in the available space to reduce the curvature due to a
displaced pivot point.

The SRMS system has proven to be operable but not optimal. With training, astronauts can

become proficient in performing required tasks. In general, however, the tasks must be carefully
programmed and significant training and practice is required before an astronaut feels comfortable

with the system. Even with training, the skill of the astronaut is still a limiting factor on system
capability. Tasks requiring coordinated or dextrous motions are difficult to achieve.

While there is no hard data to compare alternatives, the shortcomings of the SRMS design in

part can be attributed to the limitations of the RHC and THC described above, but mainly to the

unfortunate location of the two hand controls and lack of direct correspondence between the axes
of the controls and those of the visual displays.

The SRMS system incorporated no force-reflective feedback aside from indications of motor

parameters from each joint. Positional feedback of the end point is strictly visual-either direct

viewing or through CCTV. The axes of the presented display depend on the view selected: direct,
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cargobayor arm-mounted camera. Control is in the resolved rate mode. In the case of a

large-scale arm such as the SRMS, a master slave or indexed position mode is not suitable because

of scaling problems.

Figure 1 shows a simulation of the SRMS Displays and Controls System in SIMFAC. The

RHC is located to the lower fight of the D&C panel and a breadboard model of the THC to the

upper left. The CCTV displays are to the fight and the direct viewing ports are overhead and

immediately above the D&C panel.

MULTI-AXIS STUDY

Following the design of the SRMS system, the authors conducted a study of multi-axis con-

trois (1). The purpose of the study was to determine the feasibility of controlling six degrees of

freedom with a single hand control. According to the guidelines laid down for the study, mode

changes were to be avoided so that coordinated control was required simultaneously in all axes.

No specific application was defined; however, the controller was to be usable either to fly a space-

craft or to "fly" the end point of a manipulator.

The study included a review of the literature, observation of available multi-axis controllers,
and discussions with experts. Although a prototype device was not required by the contract, one

was assembled. Interestingly, the consensus of opinion at the time amongst the knowledgeable

community was that coordinated control in six axes was desirable, but probably not feasible.

A number of six-degree-of-freedom controls were reviewed. The most notable were devices

with force feedback operated in the indexed position mode. A prototype laboratory version was

developed by R. Skidmore at Martin Marietta and evaluated in various dynamic and graphic simu-

lations. A similar design and evaluation was done at Jet Propulsion Laboratories by A. Bejczy (2).

These devices were both unsuitable in design for implementation in a mature control system, but

permitted laboratory evaluation of force characteristics, displacements, and interactions with visual
feedback. Another approach was developed by D. Whitney at the Draper Laboratory. This was

elegantly designed from the mechanical viewpoint, but difficult to use due to the absence of tactile
feedback.

This study uncovered no mature or workable concept for a six-degree-of-freedom controller

and a lot of skepticism amongst practitioners as to the feasibility of implementing more than four

degrees of freedom. A more recent study of hand controls was done by Brooks and Bejczy (3).

DEVELOPMENT PROCESS

At the conclusion of the study, in spite of the climate of skepticism, the authors felt that there

was no reason why a well-coordinated, six-degree-of-freedom controller could not be designed.

Experiments with a variable-geometry test rig demonstrated that the only way to avoid inherent

cross-coupling between axes, achieve the ability to make discrete inputs where required, and still
have a direct correlation between control inputs and resulting action was to center all axes at a

single point positioned at the geometric center of the cupped hand. In this way, control of the end
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pointrelated to hand motions. Alignment of controller axes in a logical way to the axes of visual
displays was also considered essential.

One initial concern was the issue of isometric (purely force) versus displacement control. An

isometric controller is rugged and easily constructed from a mechanical standpoint. Unfortunately,

the concept leads to overcontrol, particularly in stressful situations, because of the lack of proprio-
ceptive indication of input commands. In some situations operators tend to saturate the controller

to the extent that they quickly suffer fatigue. While there may be tasks in which isometric control
is adequate and acceptable, in general the addition of displacement with suitable breakout gradients

and hard-stop positions improves performance. For this reason, most manual controls designed

on the isometric principle have been modified to include compliance.

Initial designs by the authors were based on the use of force transducers to generate input
signals. The controls were designed to allow for the inclusion of compliance and adjustable force

characteristics, although the device could also be configured for isometric operation in all axes. It

was quickly established that some compliance was advantageous. Since there was always signifi-

cant displacement, the force transducers were replaced by position transducers, thus permitting the

use of rugged, compact, noncontact, optical position sensors and eliminating the tendency to gen-
erate noise signals due to vibration or shock. In addition, a purely position system made it easier

to eliminate cross-coupling between axes when pure motions in a single axis were required.

An intermediate step of isometric translational axes and displacement in rotation, a so-called

"point and push" approach, was unsuccessful because of the problems described above in the iso-
metric axes.

In the final analysis, a prototype design was constructed which included significant dis-
placement in all six axes. The prototype unit is shown in figure 2.

PROTOTYPE DESIGN

The design concept was to ensure that all six axes pass through a single point. The mechani-
cal components and transducers for the rotational axes were mounted within a ball. The ball in turn

was mounted on a stick which was free to translate in three mutually orthogonal axes. All axes had

appropriate breakout forces, gradients and stop-force characteristics generated by passive compo-

nents. The output of the device was a position signal sensed by optical transducers. No additional

rate-dependent damping was included. While rate-dependent damping does enhance the "feel" of
the controller, the additional mechanical complexity is probably not justified.

The relationship between breakout forces and gradients is task-dependent. In general, the
breakouts should be sufficient that pure inputs can be generated easily in a single axis; however,

breakouts do have a negative impact on controllability for small coordinated movements in multiple
axes simultaneously.

Various handgrip shapes were investigated, but with the emergence of the coincident axis

concept as previously described, there was a fundamental need to provide a face perpendicular to

the direction of commanded motion. The other prime requirement was a shape which ensured the

correct positioning of the hand relative to the geometric center of the system. The natural solution
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wasa sphere.As developmentof themechanismandsensingsystemsprogressed,theball size
wasreducedto its presentconfiguration.Thisapproximatesto thesizeof abaseball,andhas
shownto becomfortablefor bare-handed,gloved,andpressure-suitedoperation.

Severalderivativesof thebasicdesignevolvedfor specialapplications.A bang-bangdevice
wasconfiguredfor testson theMMU simulator. A four-axis(threerotationsona verticalpurely
rate-dependentdampedlinearaxis)modelwasevaluatedfor flight control in helicopters. In some

configurations a protuberance was added to provide a tactile cue for orientation. Auxiliary

switches were added on this protuberance.

TEST AND EVALUATION

To date a number of tests have been carried out. It is difficult to compare data between tests

since different tasks and performance metrics were used. In general, though, subjective ratings

and measures of performance were consistent and some basic design principles were established.

Tests performed were

Johnson Space Flight Center

Initial tests were performed using the controller to control computer graphic representations

of docking tasks.

Subsequent tests were also made using the full-scale mockup of the SRMS arm (MDF).
Comparisons were made between the conventional SRMS (two three-degree-of-freedom con-

trollers) configuration and the single six-axis device. NASA human factors personnel, technicians

and astronauts participated in the tests.

Martin Marietta

The controller was evaluated with computer graphics representations of docking maneuvers.

Astronaut evaluations of a bang-bang configuration were done on the MMU simulator. Tests
were performed for operation in pressurized space suits, as shown in figure 3.

Marshall Space Flight Center

A six-axis controller was used to control a six-axis arm as shown in figure 4. The system

has been operated over the past 2 years with a variety of operators and tests.
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Grumman

Tests were carried out using two six-degree-of-freedom controllers to control two six-degree-

of-freedom dextrous manipulators as shown in figure 5. Comparisons were done with master/
slave control in the same environment.

Tests were carried out using the six-degree-of-freedom controller with the LASS simulator

for various "cherry picker" tasks.

National Aeronautical Establishment

Four-axis versions of the design were installed and flown in a variable-stability helicopter as

shown in figure 6. Evaluations were performed by numerous military and civilian pilots, including

test pilots from major airframe manufacturers. Cooper-Harper ratings were recorded for a variety

of maneuvers at various levels of control augmentation. Results were comparable to conventional

controls. For the most part flight tests were performed by highly experienced pilots.

It should be noted that, in the case of the four-axis version, the use of a relatively conven-

tional handgrip superimposed on the ball was possible while respecting the principle of a single
centre. The addition of another translation axis with a similar handgrip would introduce cross

coupling.

European Space Agency

A model of the controller has been ordered by ESA for evaluation use in the European Space

Program.

DISCUSSION

Tests to date have demonstrated that six-axis control using a single hand is not only feasible

but, providing certain design guidelines are respected, preferable to approaches in which axes are

distributed amongst separate controllers. Statements to the effect that six degrees of freedom is too

much for one hand ignore the fact that the humans have the ability to make complex multi-axis
movements with one hand using only "end point" conscious control. The coordinate transforma-

tions required are mastered at an early age and the inverse kinematics are resolved with no con-

scious effort. To operate a system using two separate three-axis controllers requires a conscious

effort on the part of the operator, thereby increasing his or her work load. The operator requires

considerable training and practice with a 2 x 3 axis system before achieving the same level of con-

trol as is immediately possible with the single six-axis device. NASA experience has shown that
the weeks of training necessary for the former become less than 30 sec for the latter. While the

guidelines have been verified only in specific environments for specific tasks, the authors feel con-

fident in making the following statements:
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1. A proportionaldisplacementcontrollerwill provideimprovedperformanceandin many
casesmorerelaxedcontrolthananisometricdevice.Performancewith isometricdevicesvaries
morebetweenindividualsubjectsthanthatwith displacementcontrol.

2. Forcegradientsandcharacteristicsshouldbecorrelatedto thetaskbeingperformed.
Theremaybeajustificationfor standardizingforcecharacteristicsandcontrollerconfigurationsfor
all space-relatedequipmentto ensurecommonalityandto reducetrainingrequirements.

3. An obviousandconsistentorientationbetweencontrolleraxesandthoseof visual feed-
backdisplaysis essential.This is anareawherestandardizationbetweentasksandsystemsis a
keyelement.A singlecontrollerdesignwouldbesuitablefor all applications,providedthatbasic
axisorientationandcontrolmodestandardsaremaintained.

4. Theuseof force-reflectingfeedbackhasnotbeenevaluatedby theauthors,althougha
programis underway to investigatesomeuniqueandnovelapproaches.In general,directforce
feedbackis usefulonly in asystemwith highmechanicalfidelity. In thepresenceof abruptnon-
linearitiessuchasstictionor backlashandparticularlytransportlag force,feedbackcanin factbe
detaimentalin excessof 100msec.

5. Forsometaskswith somemanipulators,amaster/slavesystemcanprovideequalor
superiorperformanceto thatof a manualcontrolin resolved-ratemode.Resolvedrateis, how-
ever,universallyapplicableandcanprovidea standardizedapproachfor virtually all manipulatoror
flight-control tasks.

6. In tasksin which lagexceeds1sec,it maybeassumedthatreal-timeinteractivecontrolin
thestrictsenseis not feasible.Providingphysicalrelationshipsarestableor static,areconstructive
modeusinggeneratedgraphicsfor a"prehearsal"of manipulatormovementmaybeused,storedin
memory,thenactivated.Whenlagsare100msecor less,resolved-ratecontrolmaybeusedto
directlycontroltheend-effector(positioncontrolis inadequatewhenanysubstantialexcursionmay
berequired).Thelagregimebetween100msecand1 seccausesdifficulty becausethereis aten-
dencyto compensatefor delayor systeminstability(e.g.,arm-flexingmodes)with morecomplex
drive and"prediction"algorithms.Ourexperiencethusfar is thatthesimplestcontrolalgorithm
whichpermitsstableresponsegenerallyprovidesthebestperformance.

In conclusion,testshaveshownthatsix-degree-of-freedomcontrollerscanbeusednaturallyand
effectivelyto controltasksrequiringdexterityandcoordination.

27-7



REFERENCES

.

.

1

Lippay, A.L., McKinnon, G.M., King, M.L., Multi-axis Hand Controllers, a State of the Art

Report, Proceedings of Seventeenth Annual Conference on Manual Control, Los Angeles,
June 1981.

Bejczy, A. K., Handlykon, M., Experimental Results with a Six Degree of Freedom Force

Reflecting Hand Controller, Proceedings of Seventeenth Annual Conference on Manual

Control; Los Angeles, June 1981.

Brooks, T. L., Bejczy, A. K., Hand Controls for Teleoperation, VPL Publication 85-11, Cali-
fornia Institute of Technology, Pasedena, March 1985.

27-8



ORIGINAL PAGE

Figure 1.- SIMFAC.

Figure 2.- Six-degree-of-freedom prototype.
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Figure 3.- MMU tests at Martin Marietta.

Figure 4.- Control of robot at Marshall Space Flight Center.
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Figure 5.- Simultaneous control of two arms.

Figure 6.- Four-degree-of-freedom controller installed in helicopter.
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INTRODUCTION

Displays, which are the subject of this conference, are now being used extensively through-

out our society. More and more of our time is spent watching television, movies, computer

screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the dis-
play and plays the role of operator as well as observer. To a large extent, our normal behavior in

our normal environment can also be thought of in these same terms. Taking liberties with Shake-

speare, we might say that "all the world's a display and all the individuals in it are operators in and

on the display."

Within this general context of interactive display systems, we begin our discussion with a

conceptual overview of a particular class of such systems, namely, teleoperator systems. We then

consider the notion of telepresence and the factors that limit telepresence, including decorrelation

between the (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual sys-

tem, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave

robot, i.e., via a visual display of the motor actions of the slave robot. Finally, we focus on the

deleterious effect of time delay (a particular source of decorrelation) on sensory-motor adaptation

(an important phenomenon related to telepresence).

I. TELEOPERATOR SYSTEMS

A schematic outline of a highly simplified teleoperator system is presented in figure 1. As

pictured, the major components of a teleoperator system are a human operator, a teleoperator sta-

tion (or "suit"), a slave robot, and an environment which is sensed and acted upon by the slave

robot. As indicated by the arrows flowing from left to right, sensors on the slave robot are stimu-

lated by interaction with the environment, the outputs of these sensors are displayed in the teleop-

erator station to the sensors of the human operator, and the received information is then transmitted

to higher centers (brain) within the human operator for central processing. As indicated by the

arrows flowing from right to left, the central processing results in motor responses by the human

operator which are detected in the teleoperator station and used to control motor actions by the

slave robot. The upward flowing arrows depict the role played by the motor system (at both the

slave robot and human operator levels) in controlling the sensors and therefore the flow of infor-
mation from environment to brain.
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Thenormalsituationin whichthehumaninteractsdirectlywith theenvironmentcanbepic-
turedasa specialcaseof theteleoperatorsituationby ignoringtheteleoperatorstationandidenti-
fying theslaverobot'ssensorsandeffectorswith thoseof thehumanoperator.Similarly,imagi-
naryor virtualenvironmentscan be pictured in terms of the teleoperator situation by retaining the

human operator and teleoperator station, but replacing the real environment and slave robot by a

computer simulation. Finally, robotic systems can be realized by replacing the human operator and

teleoperator station by an automatic central processor, and interpolations between teleoperator

systems and robotic systems can be realized by assigning lower-level control functions to auto-

matic processing and higher-level control functions (supervisory control) to the human operator.

Note also that the sensor and effector channels need not be restricted in the manner illustrated

in Fig. 1. Not only are there many cases in which the visual channel pictured would be paralleled

by an auditory channel, but for certain purposes the slave robot might also include sensors for

which the human has no counterpart (e.g., to sense infrared energy or magnetic fields). Further-

more, on the response side, the teleoperator station might detect and exploit responses other than

simple motor actions. For example, it might be useful for certain purposes to measure changes in

skin conductivity, pupil size, or blood pressure.

In general, the purpose of a teleoperator system is to augment the sensory-motor system of

the human operator. The structure of the teleoperator system will depend on the specific augmen-
tation envisioned, as well as on the technological limitations. A continuum that relates directly to
the issue of telepresence considered below concerns the extent to which the structure of the slave

robot is the same as that of the teleoperator. At one extreme are systems meant simply to transport
the operator to a different place. In the ideal version of such a system, the slave robot would be

isomorphic to the operator and the various sensor and effector channels would be designed to

realize this isomorphism. In a closely related set of systems, the basic anthropomorphism is pre-

served, but the slave robot is scaled to achieve, for example, a reduction of size or magnification of
strength. At the opposite extreme are systems involving radical structural transformations and

highly non-anthropomorphic slave robots. In these systems, there is no simple correspondence
between slave robot and human operator, and the design and organization of the sensor and effec-

tor channels generally becomes very complex and difficult to optimize, even at the abstract con-

ceptual level. General reviews of teleoperation and teleoperator systems can be found in Johnsen
and Corliss, 1974, and Vertut and Coiffet, 1986.

II. TELEPRESENCE

Although the term "telepresence" is often used in discussions of teleoperation, it never has

been adequately defined. According to Akin et al. (1983), telepresence occurs when the following
conditions are satisfied:

"At the worksite, the manipulators have the dexterity to allow the operator to

perform normal human functions. At the control station, the operator

receives sufficient quantity and quality of sensory feedback to provide a
feeling of actual presence at the worksite."

A major limitation of this definition is that it is not sufficiently operational or quantitative. It

does not specify how to measure the degree of telepresence. Also, as indicated by the phrase
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"performnormalhumanfunctions"in thefirst sentence,it fails to addresstheissueof telepresence
for systemsthataredesignedto transformaswell astransportandto performabnormalhuman
functions.

Independentof theprecisedefinitionof telepresence,why shouldonecareabouttelepres-
ence?Whatis it goodfor? Certainly,thereisno theoremwhichstatesthatanincreasein telepres-
encenecessarilyleadsto improvedperformance.In ouropinion,ahighdegreeof telepresenceis
desirablein ateleoperatorsystemprimarily in situationswhenthetasksarewide-ranging,com-
plex,anduncertain,i.e.,whenthesystemmustfunctionasa general-purposesystem.In suchsit-
uations,a highdegreeof telepresenceisdesirablebecausethebestgeneral-purposesystemknown
to us(asengineers)isus(asoperators).In apassagethatis relevantbothto thisissueandto the
definitionof telepresence,PepperandHightower(1984)statethefol lowing:

"We feelthatanthropomorphically-designedteleoperatorsoffer thebest
meansof transmittingman'sremarkablyadaptiveproblemsolvingand
manipulativeskillsinto theocean'sdepthsandotherinhospitableenviron-
ments. Theanthropomorphicapproachcallsfor developmentof teleopera-
tor subsystemswhich sensehighlydetailedpatternsof visual,auditory,and
tactileinformationin theremoteenvironmentanddisplaythenon-harmful,
task-relevantcomponentsof thisinformationtoanoperatorin away that
verycloselyreplicatesthepatternof stimulationavailableto anon-site
observer.Sucha systemwouldpermittheoperatorto extendhissensory-
motor functionsandproblemsolvingskills toremoteor hazardoussitesas
if hewereactuallythere."

In additionto thevalueof telepresencein ageneral-purposeteleoperatorsystem,it is likely to
beusefulin avarietyof otherapplications.Morespecifically,it shouldenhanceperformancein
applications(referredto briefly in Sec.I) wheretheoperatorinteractswith syntheticworldscreated
bycomputersimulation.Themostobviouscasesin thiscategoryarethoseassociatedwith training
peopleto performcertainmotorfunctions(e.g.,flying anairplane)or with entertainingpeople
(i.e.,providing imaginaryworldsfor fun). Lessobvious,butequallyimportant,arecasesin
whichthesystemis usedasaresearchtool to studyhumansensorimotorperformanceandcasesin
which it is usedasaninteractivedisplayfor datapresentation(e.g.,Fisher,1987;Bolt, 1984).

An importantobstacleatpresentto scientificuseof thetelepresenceconceptis thelackof a
well-definedmeansfor measuringtelepresence.It shouldnotonly bepossibleto developsubjec-
tive scalesof telepresence(usingstandardizedscale-constructiontechniques),butalsoto develop
tests,bothpsychologicalandphysiological,to measuretelepresenceobjectively. For example,
sometestbasedon the"startleresponse"mightproveuseful. Certainly,suchatestcoulddistin-
guishreliablybetweendifferentdegreesof realismin theareaof cinematicprojection.Also,of
course,givenbothsomesubjectivescalesandsomeobjectivetests,it wouldbeimportantto study
therelationsamongthetwo typesof measures.

Beyondquestionsrelatedto thedefinitionandmeasurementof telepresence,thecoreissueis
howoneachievestelepresence.In otherwords,whatarethefactorsthatcontributeto a senseof
telepresence?In fact,whataretheessentialelementsof justplain "presence?"Or alternately,
looking attheothersideof thecoin,howcantheordinarysenseof presencebedestroyed(shortof
damagingthebrain)?
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Giventhevagueandqualitativecharacterof definitionsandestimatesof telepresence,it isnot
surprisingthatthereisnoscientificbodyof dataand/ortheorydelineatingthefactorsthatunderlie
telepresence.Ourremarkson this topicthusmakesubstantialuseof intuitionandspeculation,as
well asextrapolationfrom resultsin otherareas.

Sensoryfactorsthatcontributeto telepresenceincludehighresolutionandlargefield of view.
Obviously,reductionof inputinformationeitherbydegradedresolutionorrestrictedfield of view
will interferewith theextentto whichthedisplaysystemis transparentto theoperator.Perhaps
thesetwovariablesaretradeablein thesensethattheeffectiveparameterin determiningthedegree
of telepresenceis thenumberof resolvableelementsin thefield, or,equivalently,for fields with
uniformresolutionoverthefield,Areaof Field/Areaof ResolvableElement.Also important,of
course,is theconsistencyof informationacrossmodalities:theinformationreceivedthroughall
channelsshoulddescribethesameobjectiveworld (i.e.,shouldbeconsistentwith whathasbeen
learnedthroughthesechannelsaboutthenormalworldduringthenormaldevelopmentprocess).
In addition,thedevicesusedfor displayingtheinformationtotheoperator'ssensesin theteleoper-
atorstationshould,to theextentpossible,befreefrom theproductionof artifactualstimulithat
signaltheexistenceof thedisplay. Thus,for example,thevisualdisplayshouldbesufficiently
largeandcloseenoughto theeyestopreventtheoperatorfrom seeingtheedgesof thedisplay(or
anythingelsein theteleoperatorstation,includingtheoperator'sownhandsandbody). At the
sametime,thedisplayshouldnotbehead-mountedin suchaway thattheoperatoris awareof the
mountingvia thesenseof touch. Clearly,attemptingto satisfybothof theseconstraints
simultaneouslyisaverychallengingtask.

Motor factorsnecessaryfor hightelepresenceinvolvesimilarissues.Perhapsthemost
crucialrequirementis to providefor awiderangeof sensorimotorinteractions.Oneimportant
categoryof suchinteractionsconcernsmovementsof thesensoryorgans.It mustbepossiblefor
theoperatorto sweepthedirectionof gazeby rotatingtheheadand/oreyeballsandto havethe
visualinputto theretinaschangeappropriately.Thisrequiresusingarobotwith arotatinghead,
thepositionof which is slavedto thepositionof theoperator'shead.Thedesiredresultcanthen
beachievedin two ways,dependinguponwhetherthesystemis designedto havethepositionof
therobot'seyeballs(1) fixed relativeto thetherobot'shead(e.g.,pointing straightahead)or
(2) slavedto thepositionof theoperator'seyeballsin theoperator'shead. In thefirst case,appro-
priateresultscanbeobtainedusingbinocularimagesthatremainfixedrelativeto theoperator's
headpositionduringeyeballscanning.In thesecondcase,thepositionsof theprojectedimages
mustbeslavedto thepositionof theoperator'seyeballs.If theywereinsteadheldfixed, then
whenevertheoperator'seyeballswererotated,theprojectedimageswould rotate. Forexample,if
theoperator'seyeballswererotatedto look atanobjectwhoseimageswereon theright sideof the
projectionscreens,theslaverobot'seyeballswouldrotateto theright, theimagesof theobjectin
questionwouldmoveto thecenterof thetwoscreens,andtheseimageswould thenbesensedto
theleft of thefovealregion. In ordertoeliminatethisproblem,theprojectedimageswouldalso
haveto berotatedto theright. In otherwords,if thepositionof theroboteyeballsareslaved,the
positionof theprojectedimagesmustalsobeslaved.To thebestof ourknowledge,nosuch
systemhasyetbeendeveloped(althoughmonitoringof operatoreyeballpositionis beingusedto
capitalizeon reducedresolutionrequirementsin theperipheralfield in thepursuitof reduced
bandwidth).

Anothercategoryof sensorimotorinteractionsthatis essentialfor hightelepresenceconcerns
movementsof viewedeffectors.It mustbepossiblefor theoperatorto simultaneouslymove
his/herhands(receivingtheinternalkinestheticsensationsassociatedwith thesemovements)and
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seetheslaverobothandsmoveaccordingly.Also, aswith thesensorydisplay,thedevicesusedin
theteleoperatorstationto detectandmonitortheoperatorsmovementsshould,to theextentpos-
sible,beundetectableto theoperator.Themoretheoperatoris awareof thesedevices,theharder
it will beto achieveahighdegreeof telepresence.An amusingpicturethatis addressedto the
issueof viewing one'sown effectors,or moregenerally,one'sown bodyparts,andthatis of
somehistoricalinterest,is shownin figure2 (Mach,1914).

Themostcrucialfactorin creatinghightelepresenceis, perhaps,highcorrelationbetween
(1) themovementsof theoperatorsenseddirectlyvia theinternalproprioceptive/kinestheticsenses
of theoperatorand(2) theactionsof theslaverobotsensedvia thesensorson theslaverobotand
thedisplaysin theteleoperatorstation.Clearly,thedestructionof suchcorrelationin thenormal
humansituation(in whichtheslaverobotis identifiedwith theoperator'sown body)would
destroythesenseof presence.

In general,correlationwill bereducedbytimedelays, internally generated noises, or non-

invertible distortions that occur between the actions of the operator and the sensed actions of the

slave robot. How these variables interact, combine, and trade in limiting telepresence and teleop-

erator performance is a crucial topic for research. In sec. III, we look more closely at the effects of

one of these variables, namely, time delay.

Note also that telepresence will generally tend to increase with an increase in the extent to

which the operator can identify his or her own body with the slave robot. Many of the factors

mentioned above (in particular, the correlation between movements of the body and movements of

the robot) obviously play a major role in such identification. Additional factors, however, may

also be important. For example, it seems plausible that identification, and therefore telepresence,

would be increased by a similarity in the visual appearance of the operator and the slave robot.

Finally, it is important to consider the extent to which telepresence can increase with operator

familiarization. Even if the system is designed merely to transport rather than to transform, it will

necessarily involve a variety of transformations that initially limit the sense of telepresence. A fun-

damental topic for research concerns the extent to which such limitations can be overcome by

appropriate exposure to the system and development of appropriate models of the transformed
world, task, self, etc. (through adaptation, training, learning, etc.). Figure 3 illustrates schemati-

cally how the internal dynamics of the operator are originally established and may be altered over

time when interaction with the world is transformed. The representation (in brain) of the opera-

tor's interaction with the world is an important factor in the sense of presence. The operator identi-
fies his or her own actions as such in accord with the concomitant sensory changes. Loss of such

concomitance may reduce the sense of presence. But an updating of the internal model may

promote the recovery of a lost sense of presence within that world. The figure shows how the

motor command originating in the central nervous system (CNS) activates the musculature which

in turn causes sensory changes which feed back to the CNS. The comparator is designed to

receive a feed-forward signal from the internal model, which derives from past experience and
anticipates the consequences of activity based upon that previous experience. That signal is then

compared with the contemporary consequenc:es of action. Any transform in the feedback loop will

alter the expected feedback and be discrepant with the feedforward signal. In that event, the dis-

crepant signal may be used to update the world model and lead to more accurate anticipations of

action and an improved sense of presence.
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IIl. TIME DELAYS AND ADAPTATION

Time delays between action of the teleoperator and the consequences of these actions as real-

ized on the displays in the teleoperator station can arise from a variety of sources, including the
transmission time for communication between the teleoperator station and the worksite and the pro-

cessing time required for elaborate signal-processing tasks. Independent of the causes, it is clear
that such feedback delays degrade both telepresence and performance. Research on the effects of

time delays on manual tracking and remote manipulation and on methods for mitigating these
effects are discussed in a variety of sources (e.g., Adams, 1962; Arnold and Braisted, 1963;

Black, 1970; Ferrell, 1965, 1966; Johnsen and Corliss, 1971; Kalmus, Fry, and Denes, 1960;

Leslie, 1966; Leslie, Bennigson, and Kahn, 1966; Levison, Lancraft, and Junker, 1979;

Pennington, 1983; Pew, Duffenbach, and Fensch, 1967; Poulton, 1974; Sheridan, 1984; Sheridan
and Ferrell, 1963,1967,1974; Sheridan and Verplank, 1978; Starr, 1980; WaUach, 1961;

Wickens, 1986). Of particular interest has been the development of systems that combat the effects

of time delay through judicious supplementation of human teleoperation by automatic processing

(involving predictive models and use of the human operator for supervisory control).

The particular effect of time delay on which we shall focus in the remainder of this paper is

the effect on sensory-motor adaptation. As suggested at the end of the last section, the degree of

telepresence that can be achieved with a given system depends ultimately on the extent to which the

operator can adapt to the system.

Basic demonstration of adaptation was discussed by Helmholtz in his Physiological Optics

(Helmholtz, 1962). In the typical experiment, the subject wears prism spectacles over his or her

eyes which optically shift the apparent location of objects seen through them. When the subject
reaches for a seen target without correction (open loop), the termination of his or her reach will

obviously be in error by an amount approximating the apparent displacement of the target produced

by the prism. Correction of a reach can be prevented in one of two ways. If the subject _) is

required to make a rapid ballistic movement of his or her hand to the target, the duration of hand
travel is too short to allow correction. However, if both target and hand are visible at the termina-

tion of the reach, the error may be noted by S and subsequent reaches corrected. Alternatively, the

target may be presented in a location where the hand may reach but not be seen. Following the ini-
tial measurements of reaching accuracy, the subject views either his or her hand or a surrogate for

it through the prisms for a period of time called the exposure period. During that period he may or

may not receive visual information concerning the error of the reaching. Following the exposure

period a second measure is obtained of the accuracy of open loop reaching for visible targets. The

result is generally a decrease of error from that of the initial localizations in a direction which

indicates correction for the presence of the prism displacement. Further open-loop measurements

may be made with the prisms removed, in which case the error of reaching for a target increases.
This increased error shows that the shift in localization is not dependent upon the presence of the

prisms, but is a more generalized change in eye-hand coordination adaptive for the presence of the

prisms.

Some sort of adaptive process occurs during the exposure period which compensates for the

error introduced by the prism. Information available during the exposure period produces an

update of the intemal model of the visuospatial coordinates which are anticipated as the goal of

reaching for the target. The nature of the necessary and sufficient information required for adapta-

tion, and of the subsystems that actually adapt, has been the subject of much debate and
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experimentation(Welsh,1978,1986).It appearsthatanyof anumberof sourcesof information
about the transformed relation between the seen position of the hand and its location as known

through other information may serve to produce adapation. One such source of information is the

error seen when reaching for targets. When the reaching subject can see the error, he or she is

bound to correct for it by a process of which he or she is usually quite conscious. Among other

cognitive factors, knowledge of the optical effects of the prism may enhance adaptive responses.
Active movement of the arm which produces visual feedback enhances adaptation, perhaps by

sharpening the sense of position of bodily parts. More interesting from several points of view is

the adaptive process which occurs during exposure when visible error feedback appears to be

absent. For example, subjects adapt while looking through the prism at only a luminous spot fixed

to the hand in an otherwise dark field. The spot moves with the hand, but when no other targets or

even visible landmarks are present, there can be no explicit visible error. There may, however, be

a discrepancy with the expectations based upon the concomitance of visual location of the hand
with its non-visually sensed position. But this condition raises a further question. If the subject

sees only a luminous spot on the hand as it moves, how does the nervous system identify this spot
with the sensed positions of the hand? Aside from cognitive factors, we must hypothesize that the

movements of the visible spot concomitant with the sensed movements of the hand allow this

identification. The problem then becomes one of correlation between signals. Moreover, we

recognize that this form of identification may well be a basis for establishing presence itself. This

realization led to the following experiment.

The experiment concerns the effect of time delay on adaptation of eye-hand coordination to

prism displacement. Changes in the seen position of the hand are delayed during a period of expo-
sure between test and retest. For a given exposure, the delay is fixed, but over a series of

exposures, the delay is varied. The question we asked was: What are the effects of delaying

feedback by various amounts on the adaptive process that takes place during exposure with contin-

uous monitoring by the subject of his or her hand movements in a frontal plane? In other words,
how much is the effective correlation of identifying signals degraded by delay of visual feedback of

varying intervals? In an earlier experiment (Held, Efstathiou, and Greene, 1966), we found that
delays as small as 300 msec eliminated adaptation to prism displacement. Consequently, the fol-

lowing experiment incorporated delays of smaller magnitude.

As shown in figure 4, the subject _ stood at the apparatus. He positioned his head in a

holder mounted on top of a light-proof box and looked down through an aperture into a mirror.

The mirror reflected the image of a luminous spot, formed on a ground glass screen, which

appeared on an otherwise dimly illuminated background. The image originated on an oscilloscope
face and was focused on the screen. S's right hand grasped a handle consisting of a short vertical

rod located at arm's length beneath the box. The rod was attached to a lightweight roller-bearing

arrangement which minimized inertia and friction but restricted hand movements to a region in the

horizontal plane. When the hand moved the cursor, sliding contacts were driven along two linear

potentiometers aligned at right angles to each other. This movement varied DC signals corre-

sponding to the coordinates of the cursor on the horizontal surface. These signals were applied to
the vertical and horizontal channels of the oscilloscope, thereby producing a single spot on the

screen, the position and motion of which corresponded to that of the cursor. The optical system

(lens and mirror) caused the spot to appear superimposed on the handle of the cursor when neither

positional displacements nor temporal delays were introduced. The apparatus could be set to

displace the spot 1.5 in. laterally to either the right or the left side. Temporal delays ranging from
20 to 1,000 msec could be introduced in either the lateral or the vertical dimension, or both.
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In additionto driving thetracebymovementsof thecursor,theloopcouldbeopenedandthe
tracespotsetto display,oneaatime,five stationaryvisibletargets.Thetargetcoordinateswere
determinedbyapplyingpairedX andY voltagesto theoscilloscopeundertheexperimenter'scon-
trol. Ss were instructed to set the handle of the cursor so that the top of the vertical rod felt

superimposed on the visible target. Ss pressed a switch when they felt that the cursor was cor-

rectly positioned and the position was recorded.

Ss were 12 right-handed male college undergraduates with adequate vision and were naive as

to the purpose of the experiments. Each S performed six runs separated by rest periods. Each run
consisted of six steps:

1. Practice. S was instructed to track the luminous spot with his eyes as he moved the cur-

sor back and forth across the horizontal surface and to change the left-right direction of his hand

movement with the beat of a metronome. This beat varied in a 60-sec cycle from 50 to

90 beats/min. Practice lasted a minute or two during which the subject traced the limits of

movement of the cursor. He was instructed to avoid hitting the limiting stops during subsequent

exposure and target localization, thus eliminating one potential source of information regarding the
position of his hand on the surface.

2. Pre-Exposure Localization. S was instructed to look at and localize the apparent positions

of each of the five visual targets presented four times in a pseudo-random sequence. The moveable
spot was extinguished prior to target presentations and the subject was instructed to move the cur-

sor randomly about the surface before and between target presentations.

3. First Exposure. S_performed for 2 min as he did during the practice period. Both posi-

tionaI displacement and delayed visual feedback were introduced. One of six delay conditions, 0,

120, 150, 210, 330, and 570 msecs, was presented during each run. The six delays were pre-

sented to each S_in a different order; half of the S_swere exposed to the spot laterally displaced in

one direction (right or left) during this exposure and half with the same order of delayed condi-
tions, but with the direction of displacement in the opposite direction.

4. First Post-Exposure Localization. Identical to the pre-exposure localization.

5. Second Exposure. Identical to the initial exposure, but with lateral displacement in the
opposite direction.

6. Second Post-Exposure Localization. Same as pre-exposure localization.

The results were analyzed by taking the differences between the first and second post-
exposure localizations as the primary measure of compensatory shift. These differences tend to be

larger and more reliable than those between pre-exposure and post-exposure localizations (Hardt,
Held, and Steinbach, 1971).

Four experiments were performed. They were identical except for variations in the exposure
procedure. In the first experiment, S tracked the hand-driven spot with his eyes as described

above. In the second, S's eyes fixated a dim cross during exposure, thereby precluding tracking

of the spot with the eyes. In the third, each S was trained to relax his arm while grasping the cur-

sor and the experimenter moved the cursor in the manner discussed above (passive condition).
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Thefourthexperimentwasidenticalto thesecondexceptthattwo shortertimedelayswereused,
namely,30and60msec.

TheS's mean compensatory shifts at various time delays are shown in figure 5. The overall

effect of delay in the first experiment (no fixation) is significant. All of the mean shifts are differ-
ent from zero and all the shifts under delay are significantly less than the shift at zero delay. The

results of the second experiment (fixation) did not differ significantly from those of the first,

showing that tracking the hand-driven target with the eyes was not a factor in promoting adapta-

tion. While the passive condition of the third experiment reduced the overall level of adaptation,

significant adaptation still occurred, and the overall shape of the curve with delay was similar to
that of the active conditions. Finally, the effects of very short delays in the fourth experiment did

not differ significantly from zero delay, although delays of 120 msec clearly do reduce adaptation.
We conclude that delays must exceed 60 msec if they are to be sufficient to reduce adaptation sig-

nificantly under the conditions of the experiment. For reasons we do not understand, the curves

appear to asymptote at 30 to 40% of compensation under zero delay.

It should also be noted that subjective impressions varied strongly with the delay. At the

shorter delays (not too far above threshold), the viewed hand seems to be suffering simply a minor

lag, as if it were being dragged through a viscous medium. At delays beyond a couple of hundred

msec, however, the image seen becomes more and more dissociated from the real hand (i.e., iden-

tification, and therefore presence, breaks down).

In general, it is obvious that some degree of identification is necessary in order for adaptation
to occur. Moreover, when adaptation occurs, it is obvious that identification increases. Thus,

adaptation and identification (and therefore telepresence) must be very closely related. Note, how-

ever, that adaptation will fail to occur when either (1) no identification is possible or (2) identifica-

tion is complete. Thus, tests of adaptation cannot, by themselves, be used to measure identifi-

cation; other kinds of tests must also be included. Clearly, a precise characterization of the rela-

tions between adaptation, identification, and telepresence (or presence) requires further study.
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SUMMARY

In each of two studies subjects were exposed to a continuously changing prismatic displace-

ment with a mean value of 19 prism diopters ("variable displacement") and to a fixed 19-diopter

displacement ("fixed displacement"). In Experiment 1, we found significant adaptation (post-pre

shifts in hand-eye coordination) for fixed, but not for variable, displacement. Experiment 2

demonstrated that adaptation can be obtained for variable displacement, but that it is very fragile

and will be lost if the measures of adaptation are preceded by even a very brief exposure of the
hand to normal or near-normal vision. Contrary to the results of some previous studies, we did

not observe an increase in within-S dispersion of target-pointing responses as a result of exposure

to variable displacement.

INTRODUCTION

Human observers who are allowed to view their actively moving hands through an optical

medium that displaces, inverts, right-left reverses, or otherwise rearranges the visual field reveal

significant adaptive changes in hand-eye coordination (Welch, 1978). For example, the initial
errors made when one looks through a wedge prism and attempts to touch a target are typically

corrected in a matter of minutes. Depending on the nature of the exposure conditions, this prism-

adaptive shift in hand-eye coordination can be based on changes !n (1) the felt position of the limb
(e.g., Harris, 1965); (2) visual localization (e.g., Craske, 1967); or (3) the algebraic sum of both

of these events (e.g., Wilkinson, 1971).

An alternative to prismatic displacement of constant strength (which may be referred to as

"fixed displacement") is one that varies continuously in both magnitude and direction ("variable

displacement"). It has been shown by Cohen and Held (1960) that active exposure to a variable

displacement in the lateral dimension with a mean value of zero fails to produce an adaptive shift in

the average location of the subject's repeated target-pointing attempts, although it does appear to

increase the variability of these responses around the mean. The latter observation has been

interpreted as a degradation in the precision of hand-eye coordination.

The absence of adaptation to this form of variable displacement should not come as a sur-

prise, since, over the course of the prism exposure period, there is no net prismatic displacement to

which one can adapt. What remains to be determined, however, is whether it is possible to adapt

to a situation of variable displacement in which the mean value is significantly different from zero,

since in this case it is at least plausible for such adaptation to occur. The aim of the present

1The authors wish to thank Arnold Stoper for his valuable comments on a preliminary draft of this paper and
Michael Comstock for creating the computer program used for dam acquisition.
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investigation was to answer this question and, in addition, to compare the magnitude of such

adaptation with that produced by comparable fixed prismatic displacement.

METHOD

General Design

Two experiments were carried out. In both, subjects were used as their own control under

conditions of fixed and variable prism exposure to the same average displacement (19 prism

diopters). This comparison is seen in figure 1. Experiment 1 also included the between-group

factor of direction (up vs. down) of the optical displacement of the hand that was present during

exposure. Prism adaptation was indexed by the difference between pre- and postexposure target-
pointing accuracy without visual feedback (visual open-loop). 2 Also obtained were post-pre dif-

ferences in the within-S variability (standard deviation) of target-pointing over the 10 pre- and

10 postexposure trials. Finally, potential intermanual transfer of the prism-adaptive shifts in tar-

get-pointing was examined by testing both exposed and nonexposed hands.

General Procedure and Apparatus

At the outset of the testing period, subjects sat at a table with faces pressed into the frame of a

pair of prisrrdess (normal-vision) goggles built into a box. Looking into this box, they viewed the

reflection of a back-illuminated 1- by 1-in. cross, the apparent position of which was straight ahead

at approximately eye level and at a distance of 48 cm, nearly identical to that of a vertically posi-
tioned 12- by 12-in. touch pad. For the preexposure (and later the postexposure) measures of tar-

get-pointing accuracy, subjects pointed alternately with the right and left index fingers

(10 responses each), attempting to contact the touch pad at a place coincident with the apparent
center of the cross. The inter-response interval was approximately 3 sec. The mirror blocked the

view of the pointing hand, thereby precluding error-corrective visual feedback. When subjects

touched the pad, the X and Y coordinates of the finger's position were immediately signaled and
written to a floppy disk, using a program supported by an Apple II Plus computer.

During the prism-exposure period, the prismless goggles were replaced by binocular prisms

(variable or fixed) and the mirror was moved out of the way, allowing subjects to see the touch pad

as well as the hand when it was brought into view. In addition, a hand-movement guide consisting

of a vertical rod was situated parallel to and approximately 9 cm away from the surface of the pad.

The exposure period consisted of a series of 55-sec cycles. During the first half of each

cycle, subjects, who were looking through the (upward- or downward-displacing) prisms, actively

moved the preferred hand up and down along the rod, fixating the limb at all times. They grasped
the rod with the thumb hooked around the rod and the palm of the hand facing them. Hand

2An attempt was also made to obtain measures of prism-adaptive shifts in felt-limb position. During the pre-
and postexposure periods, subjects (with eyes shut) were to try to place the right and left index finger (alternately) at
a position on the touch pad that they felt to be directly in a horizontal line with an imaginary point in the center of
the bridge of their nose. Unfortunately, many subjects reported that they approached this task as if it were merely
another form of target-pointing. Furthermore, their responses were erratic and the data were difficult to interpret.
For these reasons, the results from these measures have been omitted from this report.
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movements were made to the beat of a 1-Hz electronic metronome; the limb was moved up on the

fast beat, down on the next beat, and so forth, for exactly 27.5 sec. Then for the next 27.5 sec

the subjects rested the hand on the table and fixated the cross while looking through the goggles,

which were now set to produce displacement in the opposite direction. This was followed by
27.5 sec of observed hand movement, with the direction of prismatic displacement returned to its

original state. Subjects alternated between these two displacements for a total of nineteen 55-sec

cycles (17:25 min). Finally, postexposure measures of target-pointing accuracy were obtained in

the same manner as the preexposure measures.

The conditions of fixed downward and fixed upward displacement were achieved by means

of paired base-up and base-down wedge prisms, respectively. The prisms were attached to a slid-

ing panel that moved them to a position directly in front of the goggle eyepieces. Variable dis-

placement in the vertical dimension was produced by a pair of binocular, motor-driven Risley
prisms which rotated in opposite directions; the net result was a binocular optical displacement that

continuously changed in the vertical dimension over a range of +30 diopters (+17.1 o).

Measures of potential prism-adaptive shifts in target-pointing accuracy in the vertical dimen-

sion were obtained by subtracting (for each hand separately) the mean of the 10 preexposure

responses from the mean of the 10 postexposure responses. Potential prism-induced changes in

within-S variability of target pointing were determined by subtracting the standard deviation of a

given subject's 10 preexposure measures (for a particular hand) from the standard deviation of the

corresponding 10 postexposure measures.

EXPERIMENT 1

Design

Twelve subjects (8 males and 4 females, ages 19-33) were randomly divided into two

6-subject groups. For one group the visual field was displaced upward during that half of each

cycle in which the subject viewed the actively moving hand; for the other, the field was displaced

downward. Subjects were tested individually in two conditions-variable displacement and fixed
displacement-occurring 48 hr apart. The order of the two conditions was counterbalanced across

subjects.

Procedure

Following the preexposure measures of open-loop target pointing, the mirror was removed

and subjects looked through prismless (i.e., nondisplacing) goggles while undergoing the nineteen
55-sec cycles. On each cycle the hand was viewed for 27.5 sec, followed by 27.5 sec of viewing

the target cross while the hand was resting on the table out of view. The purpose of this long

period of normal vision was to establish an accurate and reliable baseline measure of each subject's

perception of the hand's location under nondistorted visual circumstances before introducing the

prismatic displacement. After a short rest break, subjects repeated the procedure, but this time they
viewed the moving hand through prisms that were set either for fixed or for variable displacement.

In order to reduce the possibility of significant loss of adaptation through spontaneous decay, the

postexposure measures were obtained immediately after the subjects had viewed the prismatically
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displacedhand,whichnecessitatedterminatingthelastcycleafterthefit'st27.5sec.It is important
to notethatbecauseof thisproceduraldecisionthelastview of thehandfor thefixeddisplacement
conditionwasoneof 19diopters'displacement,while for thevariable-displacementconditionit
entailedlittle or no displacement(seefig. 1).

Results

As shown in figure 2, prism-adaptive shifts in target-pointing accuracy for the exposed hand

were obtained in the fixed, but not in the variable, displacement condition for both the upward and

downward displacement groups. The finding of adaptive post-pre shifts for both directions of

displacement confirms that these changes represent adaptation to the prisms per se, rather than

some form of "drift" of pointing accuracy over time due to fatigue or other factors unrelated to the

prismatic displacement. Analysis of variance revealed main effects for Direction (up/down),

F (1,4)= 14.49, I2= 0.22, and Displacement (variable/fixed), F (1,4)= 30.01, 12< 0.01,

and for the Direction/Displacement interaction, F (1,4) = 82.14, 12< 0.001. Figure 2 indicates

that the difference between the variable and fixed displacement conditions was greater for the

upward displacement group. There was no main effect for order, nor was this factor involved in

any interactions. Adaptation for the nonexposed hand (due to intermanual transfer) was obtained

only for the f'Lxed/upward displacement condition.

No statistically significant post-pre shifts in the dispersion (standard deviations) of target

pointing were obtained for either hand in any condition.

Finally, for none of the conditions was there evidence of any decay of adaptation over the

10 postexposure trials for either hand.

Discussion

Since adaptation occurred for fixed but not variable displacement, the answer to the original

experimental question would seem to be that human observers are not capable of adapting to

nonzero variable displacement, at least with exposure periods of the length used here. There is,

however, an alternative possibility, based on the fact that for subjects in the variable-displacement

condition, the last experience during the prism exposure period was of normal or near-normal

vision (fig. 1). It may be suggested that the adaptation produced in this experiment (or perhaps
specifically in the variable-displacement condition) is quite fragile and therefore easily destroyed by

subsequent exposure to normal vision. If so, then one could suppose that adaptation was actually

produced in both conditions, but eliminated for the variable-displacement condition because of the

"unlearning" that occurred at the very end of the exposure period. Experiment 2 attempted to
examine this possibility by asking the following question: Does the difference in adaptation in

favor of fixed displacement that was obtained in Experiment 1 remain when the exposure period

for the variable-displacement condition is caused to end on maximum displacement, rather than on

no displacement?
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EXPERIMENT 2

Design

Six subjects (2 males and 4 females, ages 21-39) were used as their own control in condi-
tions of variable and fixed displacement in the upward direction only. The two conditions were

separated by 48 hr and their order of occurrence counterbalanced across subjects.

Procedure

During the prism-exposure period, subjects viewed the preferred hand in the same manner as
in Experiment 1, with the addition of one extra half-cycle. The latter ended after only 13.75 sec,

which meant that the prismatic displacement for the variable condition was at its maximum of

30 diopters while the displacement for the fixed condition remained at its constant level of

19 diopters (see fig. 1).

Pre- and postexposure measures of target-pointing accuracy for both hands were taken in the

same manner as in Experiment 1.

Results

As may be seen in figure 3, prism-adaptive shifts in target-pointing accuracy were found for

both variable and fixed-displacement conditions and both exposed and nonexposed hands. All of
the post-pre shifts were significantly different from zero, but there were no main effects for the

factors of Hand (exposed/non-exposed) or Displacement (variable/fixed), nor any interactions.

Once again, no prism-induced changes in target-pointing precision (within-S standard deviations)

or postexposure decay of adaptation were observed.

Discussion

The results of Experiment 2 are consistent with the "fragility hypothesis," since when the

most recent visual experience in the variable-displacement condition was of maximum displace-

merit, adaptation was substantial and, indeed, as great as that produced by fixed displacement. An

interesting secondary finding was the large amount (i.e., 100%) of intermanual transfer produced.

CONCLUSIONS

The present study has demonstrated that human subjects are capable of adapting their hand-

eye coordination to nonzero variable displacement, although this adaptation is quite easily
destroyed. It is possible, of course, that this fragility is unique to the current situation in which the

prism-exposure task did not involve visual error-corrective feedback and exposure periods were

repeatedly interrupted by rest periods. Furthermore, the present design does not allow us to
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excludethepossibilitythattheadaptationproducedin thefixed-displacementconditionwasalso
fragileandwouldthereforehavebeenquickly eliminatedby exposureto normalvision.

A surprisinglylargeamountof adaptationwasobservedfor thenonexposedhand,especially
in Experiment2. This mayhavebeendueto theuseof alternatingexposureandrestperiods,since
"distributionof practice"hasbeendemonstratedtofacilitateintermanualtransferof prismadapta-
tion (e.g.,Cohen,1973).Suchintermanualtransferhasfrequentlybeenusedasevidencethat
prism-adaptivechangesin vision have occurred. Evidence against this interpretation of the present

observations, however, comes from studies (e.g., Uhlarik and Canon, 1971) showing that prism

exposure not involving target-pointing, as in this experiment, is generally ineffective in producing
this kind of adaptation. An alternative interpretation of intermanual transfer of prism adaptation is

that it represents a central change in motor programming that is usable, at least to some extent, by

the nonexposed hand.

Contrary to the results of Cohen and Held (1960), neither of the present experiments revealed

an increase in the dispersion of target pointing as a result of exposure to variable displacement.

Two explanations for this failure to replicate may be proposed. First, it is possible that the pres-

ence of only one target for the pre- and postexposure trials (in contrast to the four used by Cohen

and Held, 1960) was conducive to a "stereotyping" of target-pointing responses. Such a potential
constraint on trial-to-trial variability would be likely to counteract any disruptive effects that vari-

able displacement might have on the within-subject dispersion of responses. Second, the present

exposure period was relatively brief in comparison to that used in the Cohen-Held experiment.

Indeed, in the latter, no increase in dispersion was obtained until after 30 min of variable displace-

ment. In the present experiment, actual exposure to the hand (excluding the 27.5-sec "rest"

periods) amounted to only a little over 8 rain.

It is of interest to speculate why variable prismatic displacement should produce adaptation

that is so easily destroyed (assuming that future research supports this conclusion). One possibil-
ity is that exposure to variable displacement causes the adaptive system to be quite labile and there-

fore easily changed, even by very brief exposures to new visual displacements or to normal Vision.

This interpretation fits with the finding by Cohen and Held (1960) of degraded hand-eye precision

after exposure to variable displacement, but is weakened by the present failure to replicate the
Cohen-Held observation.

A second possibility is that subjects exposed to variable-displacement experience only "visual

capture," a nearly instantaneous shift in felt-limb position when viewing the prismatically displaced
hand (Welch and Warren, 1980). Since visual capture is extremely fragile, it will be destroyed by

even a brief exposure to normal vision and will also rapidly decay when view of the hand is pre-

cluded. The quick decay of visual capture, however, contrasts with the absence of postexposure

decay in either of the present experiments, rendering this interpretation questionable.

The most likely explanation of the present results is that when human observers are actively

exposed to a systematically changing prismatic displacement, they acquire the ability to adapt (or

readapt) nearly instantaneously, as required. Such presumptive adaptive flexibility would repre-

sent a clear advance over the situation with fixed displacement, since the latter involves relatively

slow acquisition of adaptation and the presence of substantial aftereffects upon return to normal

vision. In short, it is possible that prolonged exposure to variable displacement provides the

observer with the ability to shift from one set of visuomotor relationships to another with a mini-

mum of disruption. An experiment to evaluate this interpretation is currently being implemented.
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VISUAL ENHANCEMENTS IN PICK-AND-PLACE TASKS:
HUMAN OPERATORS CONTROLLING A SIMULATED

CYLINDRICAL MANIPULATOR

Won S. Kim, Frank Tendick, and Lawrence Stark

University of California

Berkeley, California

ABSTRACT

A visual display system serves as an important human/machine interface for efficient tele-
operations. However, careful consideration is necessary to display three-dimensional information

on a two-dimensional screen effectively. A teleoperation simulator is constructed with a vector-

display system, joysticks, and a simulated cylindrical manipulator in order to evaluate various dis-

play conditions quantitatively. Pick-and-place tasks are performed, and mean completion times are

used as a performance measure. Two experiments are performed. First, effects of variation of

perspective parameters on a human operator's pick-and-place performance with monoscopic per-

spective display are investigated. Then, visual enhancements of monoscopic perspective display

by adding a grid and reference lines are investigated and compared with visual enhancements of

stereoscopic display. The results indicate that stereoscopic display does generally permit superior

pick-and-place performance, while monoscopic display can allow equivalent performance when it

is def'med with appropriate perspective parameter values and provided with adequate visual

enhancements. Mean-completion-time results of pick-and-place experiments for various display
conditions shown in this paper are observed to be quite similar to normalized root-mean-square

error results of manual tracking experiments reported previously.

INTRODUCTION

Visual display systems serve as an important human/machine interface for efficient teleopera-
tions in space, underwater, and in radioactive environments. 1-4 Closed-circuit television systems,

presenting two-dimensional (2-D) images captured by remote video cameras, have been commonly

used for these visual displays. As technology evolves from manually controlled teleoperations to
sensor/computer-aided advanced teleoperations 5,6 or telerobotics, 7-11 graphics displays have been

drawing attention as a means to provide an enhanced human/machine interface. A graphic display

can present an abstract portrayal of the working environment or state of the control system based
on sensor signals and a data base. 2,12 A force-torque display 13 and a "smart" display 14 are exam-

ples of graphic displays developed for efficient teleoperations.

There are two types of visual displays: monoscopic and stereoscopic. The stereoscopic dis-

play provides two slightly different perspective views for the human operator's right and left eyes.

A stereoscopic view enables the human to perceive depth by providing a distinct binocular depth

cue called stereo disparity. Some earlier studies with television displays showed that stereoscopic

displays, as compared to monoscopic displays, did not provide significant advantage in performing

some telemanipulation tasks. 15-17 Careful recent studies, 18,19 however, indicated that stereo per-

formance was superior to mono under most conditions tested, while the amount of improvement
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variedwith visibility, task,andlearningfactors.Theseresultsshowedthattheadvantageof the

stereoscopic television display became pronounced with increased scene complexity and decreased

object visibility.

Monoscopic and stereoscopic graphic displays were recently compared by employing three-

axis manual tracking tasks. 20,21 Root-mean-square (rms) tracking error was used as a perfor-

mance measure for quantitative evaluation. Results were consistent with previous television dis-

play results, indicating that stereoscopic graphic displays did generally permit superior tracking

performance, while monoscopic displays allowed equivalent performance when they were defined

with appropriate perspective parameters and provided with adequate visual-enhancement depth
cues such as reference lines.

The purpose of our present study is to examine generality or consistency of the above results.

A three-axis pick-and-place task, instead of the three-axis manual tracking task, is employed in our

present study as a realistic teleoperations task. Two experiments similar to those in reference 21

are performed. In the first experiment, we quantitatively evaluate monoscopic perspective display

by investigating individual effects of perspective parameters. Perspective projection alone, how-

ever, does not provide sufficient three-dimensional (3-D) depth information for monoscopic dis-

play. Thus, a 5-1ine-by-5-1ine horizontal grid representing a base plane and a vertical reference line

representing vertical separation from the base plane are introduced as two visual-enhancement
depth cues. In the second experiment, we investigate effects of these two visual-enhancement

depth cues on pick-and-place performance for both monoscopic and stereoscopic displays.

METHODS

In order to evaluate various display conditions quantitatively, a teleoperations simulator is con-

structed with a vector-display system, joysticks, and a simulated cylindrical manipulator. Figure 1

shows a schematic diagram of the experimental setup, with which three-axis pick-and-place tasks

are performed.

Real-Time Simulation of The Manipulator

The Hewlett-Packard 1345A vector-display module is used for real-time dynamic display. It

has high resolution (2048 x 2048 addressable data points), and high vector-drawing speed
(8194 cm of vectors at 60-Hz refresh rate). It also has a fast vector-updating speed (approximately

10 l.tsec/vector), communicating with a host computer through a 16-bit parallel I/O port. Two iso-

tonic (displacement) joysticks are employed for the Cartesian position control of the manipulator

gripper. An LSI-11/23 computer with the RT-11 operating system is used as a host computer. It

performs computations for the simulated manipulator motion and perspective or stereoscopic dis-

play, and measures task completion time.

The human operator indicates the desired gripper position of the manipulator in robot base

Cartesian coordinates by using three axes of the two joysticks. The computer senses the joystick

displacements through 12-bit A/D converters. The joystick gain for each axis is chosen to be 1 so

that the full range of the joystick displacement for each axis corresponds to the full movement

range of the gripper position for the corresponding axis. The computer transforms the desired
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gripper position in Cartesian coordinates to the desired joint angle (01 for the revolute joint 1) and

joint slidings (d2 and d3 for the prismatic joints 2 and 3) by employing the inverse kinematic posi-
tion transformation. The next two sections describe how to present 3-D information of the manip-

ulator on the 2-D display screen.

Monoscopic Perspective Display

A monoscopic perspective display can be constructed by a perspective projection of an object
onto the view plane (projection plane) followed by a mapping of the view plane onto the screen. 22

There are two approaches to obtaining the perspective projection of an object. One is to leave the

object stationary and choose a desired viewpoint and a projection plane, called the viewpoint-
transformation method. The other approach is to fix the viewpoint and transform the object, called

the object-transformation method. These two approaches are mathematically equivalent. 21,23 The
latter will be described here.

In order to derive the perspective display formulas based on the object-transformation method,

a right-handed XYZ world coordinate system is established. The viewpoint is fixed at the origin
(0, 0, 0) and the view plane at the z = -d plane. Perspective projection can be obtained by three

transforms: rotation R, translation T, and perspective transform P.

Initially, an object is located so the view reference point of the object is at the origin. Then the

object is appropriately rotated and translated to achieve the desired viewing angles and distance. In

general, an arbitrary orientation of an object can be described by successive principal-axis rotations
about the Y, X, and Z axes.

R = Rot(Y, -01) Rot(X, 02) Rot(Z, 03) (1)

where the yaw, pitch and roll angles are -01, --0 2, and 03, respectively. It can be shown that the

yaw and pitch angles used in the object transformation approach are equivalent to the azimuth and

elevation angles in the viewpoint-transformation approach. 21

For simplicity, 4-space homogeneous coordinate transformations are used. The rotation of a

point at position (x, y, z) to a new position (x', y', z') can be described by

(x', y', z', 1) = (x, y, z, 1) R (2)

where

R

Rll R12 R13 0]

R21 R22 R23 0 lR31 R32 R33 0

0 0 0 1 (3)

From equation (1), each element of the 4 x 4 matrix R can be calculated as

RII = CIC 3 - SIS2S3, R12 = -CIS3 - SIS2C3, R13 = SIC2, R21 = C2S3, R22 = C2C3,

R23 = $2, R31 = -S1C3 - C1S2S3, R32 = SIS3 - C1S2C3, R33 = C1C2. Si and Ci denote sin 0i

and cos 0i, respectively.
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After the rotation, the object is translated by D along the negative Z axis.

T = Trans(0, 0, -D) (4)

1 0 0

0 1 0

0 0 1

0 0-D

0

0

0

1 (5)

The length D represents the distance from the viewpoint to the view reference point, called the

object distance.

The UV coordinate system is embedded in the view plane. Perspective transformation of a

point Q (x, y, z) in the world coordinate to its projection Qp (u, v) on the view plane can be
described by

(x', y', z', w) = (x, y, z, 1) P (6)

(u, v) = (x'/w, y'/w) (7)

where

V 100 0 1 0 _ .

0 0 0

0 0 0 (8)

The symbol d denotes the view plane distance from the viewpoint. Increase of the view plane

distance results in uniform magnification of the perspective projection. Thus, d can be specified in
terms of the zoom or magnification factor, which can be defined as M = d/D. Distance d can also

be specified in terms of field-of-view (fov) angle, which is the angle at the viewpoint subtended by
the view-plane window. If the view plane window is specified as a square region

(Umin, Umax, Vmin, Vmax) = (-1, 1, -1, 1), then the fov angle is related to the view-plane distance

by d = cot (fov/2). The perspective projection obtained with a wide fov angle is similar to the

picture taken by a wide-angle camera lens, and a narrow fov angle is similar to one taken by a tele-
photo lens.

After the object is projected onto the view plane, mapping of the view plane onto the physical

display screen is performed. Mapping of a point from (u, v) in the UV coordinate to (Xs, Ys) in the

screen coordinate can be achieved by appropriate translations and scalings:

Xs = VSX u + VCX (9)

Ys = VSY v + VCY (10)

where VSX and VSY are scaling factors, and VCX and VCY are translation factors.
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Stereoscopic Display

The monoscopic display does not give true depth perception. The human brain merely inter-

prets the 2-D monoscopic picture as 3-D space. The stereoscopic display presents two views of an

object on the display: one for the right eye, and the other for the left. This pair of pictures is called

a stereo pair or a stereogram. The human operator views a stereogram through a stereoscope. 24

Most people can fuse the stereo pair into one 3-D image, perceiving relative depth by the human

stereoscopic vision ability. The stereoscope is composed of two converging lenses and a support-
ing frame (septum) separating right and left views. As illustrated in figure 2, two converging

lenses form the image of the stereo pair onto the image plane behind the actual display screen,

which can provide fairly correct accommodation and convergence conditions for the human eyes, if

the geometrical and optical conditions are appropriately arranged.

In order to obtain the formulas for the stereoscopic display, an XYZ coordinate system is

established with its origin in the middle of the two optical centers for the right and left eyes, as

depicted in figure 2. The display screen, on which a stereogram is presented, is located at the pic-

ture plane (view plane, projection plane) z = --d. The two converging lenses of the stereoscope

form the virtual image of the stereogram on the image plane z = -D. By denoting the focal length
of the binocular lens as F, the converging lens formula yields

1 1 1
d D F (11)

When D is infinity, d = F. When D = 40 cm and F = 20 cm, d = 13.3 cm.

As in the object-transformation approach used previously for the monoscopic perspective dis-

play, the object is initially located so the view-reference point of the object is at the origin. Then
the object is appropriately rotated and translated using equations (3) and (5) to achieve the desired

viewing angles and distance.

Denoting the interocular distance (IOD) (approximately 5.5 to 6.5 cm), we can express the
positions of the two optical centers by (Xor, 0, 0) for the right eye and (Xol, 0, 0) for the left eye,

where Xor = IOD/2, and Xol = -IOD/2. The projection of a point P (x, y, z) onto the view plane

for each eye is formed at the intersection of the projection line with the view plane. By
representing the right and left projection points by Pr (Xr, Yr) and PI (Xl, Yl), respectively, the

following equations can be obtained:

Xr = Xor + (x - Xor)(--d]z) (12)

xl = Xol+ (x - Xol)(-d/z) (13)

Yr = YI = Y (-d/z) (14)

Finally, these projection points on the projection plane can be mapped onto the physical screen

coordinates by appropriate translations and scalings.
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Experimental Procedures

Two sets of experiments were performed, varying perspective parameters and visual enhance-
ment conditions. In both experiments, subjects were seated in front of the display (on which the

manipulator, the objects to pick up, and the boxes to place them in were presented) (fig. 3), and

the subjects were asked to perform three-axis pick-and-place tasks. The subjects controlled the

manipulator using two joysticks to pick up each object with the manipulator gripper and place it in

the corresponding box. One hand, using two axes (forward-backward and right-left) of one joy-

stick, controlled the gripper position for the two axes parallel to the horizontal base plane. The

other hand, using one axis (forward-backward) of the other joystick, controlled the vertical axis.

Each of the four objects (point targets A, B, C, D) was positioned randomly within the manip-
ulator reach space. Each object position was marked by a tiny diamond and a letter. Picking up an

object was accomplished when the manipulator gripper touched the object within the boundary of

the error tolerance, defined by a hypothetical cube. The size of the cube was set so that the picking

process was neither too easy nor too hard within the range of experimental variation. Accom-

plishment of picking up an object was indicated by doubling the object letter. Thereafter, the object

moved together with the gripper until it was placed in the fight box. Placing an object was accom-

plished by touching the correct box with the gripper, similar to the picking process. After the

touch, the object symbol letter became single again, and the object remained in the box, while the
gripper was free to move for the next operation.

One run of the pick-and-place task consisted of five sessions of four pick-and-place operations

in order from object A to D, totaling 20 pick-and-place operations.

Perspective Parameter Experiment. In this experiment, we investigated the effects of different

perspective parameters on the human operator's pick-and-place performance with monoscopic per-

spective display. The five perspective parameters, azimuth, elevation, roll, fov angle, and object
distance were independently varied, keeping the other variables fixed at their nominal values. The

nominal perspective parameter values were chosen as elevation = --45 °, azimuth = 0 °, roll = 0 °, fov
angle = 12°, and object distance = 40 cm.

Experimental variables were varied as follows: (1) seven elevation angles: 0 °, -15 °, -30*,

-45*, -60", -75 °, and -90*; (2) eight azimuth angles: -135 °, -90 °, -45 °, 0", 45", 90 °, 135*, and

180°; (3) eight roll angles: -135 °, -90 °, -45 °, 0 °, 45 °, 90 °, 135 °, and 180°; (4) five fov angles:

8 °, 12 °, 24", 48 °, and 64 °, (5) four object distances: 30, 40, 80, and 160 cm.

The monoscopic perspective presentation with the nominal perspective parameters is shown in

figure 3. Some examples of variations in perspective parameter values used in this experiment are

shown in figure 4. In this experiment, a 5-1ine-by-5-1ine horizontal grid and vertical reference lines

were always presented. The experiment was run with each of the 32 experimental conditions pre-

sented in random order. There were two runs of 20 pick-and-place operations per condition for
each subject. For the monoscopic conditions, the subjects were seated 40 cm in front of the dis-

play screen.

Visual Enhancement Experiment. In this experiment, effects of visual enhancements on the

human operator's pick-and-place performance were investigated. The visual-enhancement depth

cues used for both monoscopic and stereoscopic displays were a grid and reference lines. Three-

axis pick-and-place tasks were performed for four visual-enhancement conditions at each of five

different perspective parameter conditions with both monoscopic and stereoscopic displays. The
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four visual-enhancementconditionswere: GL (presenceof bothgrid andreferenceline),L
(referenceline only),G (gridonly), andO (neither).Thefive perspectiveparameterconditions
usedwere: (1)0* in elevation,(2) -90° in elevation,(3) nominalperspectiveparametervalues,
(4)45*in azimuth,and(5) 80cm in objectdistance.

Monoscopicpresentationsfor thefourvisual-enhancementconditionswith thenominalper-
spectiveparameters(conditionIII) areshownin figure 5. Monoscopicpresentationsfor thefive
perspectiveparameterconditions,whenbothgrid andreferencelinesarepresented(conditionGL),
areshownabovethemeancompletiontimeplot in figure8. A stereoscopic presentation with the

nominal perspective parameters, when both grid and reference lines are presented, is shown in fig-

ure 6. The experiment was run first with each of the 20 monoscopic display conditions presented

in random order, then with each of the 20 stereoscopic display conditions presented in random

order. There were two runs of 20 pick-and-place operations per condition for each subject.

In the monoscopic display conditions, subjects were seated 40 cm in front of the screen. In the

stereoscopic display conditions, subjects were seated 13.3 cm in front of the screen, viewing the

stereogram through the stereoscope. The focal length of the converging lens of the stereoscope

was 20 cm, and thus the virtual image of the stereogram was formed at 40 cm from the lens (by

eq. (11)).

Subjects

Two young adult male subjects with normal stereo vision participated in each of the two

experiments. Each subject was trained for at least 5 hr before the experiments to saturate the

"learning" effect. During the training period, mean completion times were regularly checked to see
whether the subject reached an asymptotic, steady-state, pick-and-place performance. However,

during the actual experiment, mean completion times were not checked until all the experimental

runs were completed. Each subject repeated the experiment once more in order to examine intra-

subject variation as well as inter-subject variation.

EXPERIMENTAL RESULTS

Mean completion time was used as the performance measure in our pick-and-place tasks. Each

of the mean completion time data points in figures 7 and 8 is the average obtained from one run of

20 pick-and-place operations.

The experimental results for two subjects with two runs each plotted in figure 7 with mean
completion time as the ordinate and perspective parameter values as the abscissa. The effects of

elevation, azimuth, roll, for angle, and object distance are plotted in figure 7 (a), (b), (c), (d), and

(e), respectively.

The experimental results for two subjects with two runs each are shown in figure 8. Mean

completion time (ordinate) is plotted for the various display conditions (abscissa). The mono-

scopic display data are marked by squares and dashed lines, and the stereoscopic display data are

marked by filled diamonds and solid lines. The five separate columns represent five different per-

30-7



spectiveparametersettings,conditions1-5. Eachcolumnhasfourdifferentvisual-enhancement
conditions, GL, L, G, and O.

DISCUSSION

Effects of Perspective Parameters

The mean-completion-time plots of figure 7 show the effects of variation of perspective param-

eters on pick-and-place performance. Plot (a) shows that as the elevation angle approaches 0 ° or

-90 °, mean completion time increases. This is due to the loss of one axis' position information.

Performance at -90* elevation was better than at the 0 ° extreme because the perspective view at
-90" elevation made it possible to see some of the height of the reference line if it was not near the

center of the projected image. Thus, there was a partial view of the "lost" axis. Plot (b) shows

that as the azimuth angle exceeds the range of --45" to +45*, the mean completion time increases

markedly. An azimuth angle other than 0 ° implies rotation of the display reference frame relative to

the joystick control axes, thus making the joystick control more difficult compared to the 0"

azimuth angle. When the azimuth angle is beyond --45 ° to +45*, it is difficult for the human oper-
ator to compensate. Performance is especially poor when the azimuth angle is about -90* or +90 °,

even worse than the case when azimuth angle is 180*. At 180* azimuth angle, the human operator

uses inversion rather than rotation. Plot (c) shows that change in roll angle produces an effect

similar to changing the azimuth angle, because of analogous disorientation. Plots (d) and (e) show

that as the fov angle or the object distance increases, and the displayed object picture becomes
smaller, task performance degrades.

Effects of Visual Enhancements

The results of the visual-enhancement experiment appear in figure 8 (a) and (b). Monoscopic
display results in columns I and II show that when the elevation angle is 0" or -90*, the mean
completion times are very long, even with grid or reference line enhancements. This is because

position information for one axis is lacking, and the subject must sweep the gripper along that axis

until it touches the correct position. At -90* elevation, the reference lines almost disappear. At 0 °
elevation, the grid appears as a single line. Monoscopic display results in columns III, IV, and V

show that by choosing adequate elevation angles, mean completion times can be shortened, and

fast pick-and-place performance can be attained with monoscopic perspective display, if reference

lines are provided (GL, L). However, the grid alone without the reference line (G) does not
appear to shorten completion time.

The stereoscopic display results in figure 8 show that mean completion times with stereoscopic
display are short over all visual conditions, regardless of the presence of a grid or reference lines.

Especially, stereoscopic display data in columns I and II show that stereoscopic displays maintain
fast performance even with extreme elevation angles. Comparable mean completion times between

monoscopic and stereoscopic displays in columns III, IV, and V demonstrate that pick-and-place
performance with monoscopic perspective displays, if reference lines are provided and suitable

perspective parameters are chosen, can be as good as that with stereoscopic displays.
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Comparison With Three-Axis Manual Tracking Tasks

It is observed that the mean-completion-time plots obtained from the pick-and-place experi-

ments in this paper are quite similar to the normalized rms tracking error plots obtained from the
three-axis manual tracking experiments in reference 2. This strong similarity suggests that the

results obtained in this paper are not task-specific, but may be applicable to other tasks.

Choice of Display

There are many kinds of depth cues that a display can provide. Monoscopic display can pro-

vide monocular depth cues such as interposition (occlusion), brightness (light and shade), per-

spective projection (size), and monocular motion parallax. The human operator's knowledge and

learning can also provide strong depth information pertaining to a 3-D model of a working envi-

ronment. Stereoscopic display also provides a distinct binocular depth cue, called stereo disparity
or binocular parallax. Consideration of these cues basically explains the experimental results of

Pepper, Smith, and Cole. 18 Their results indicated that stereoscopic display performance was

superior to monoscopic display performance under most conditions tested, although the amount of
improvement varied with task, visibility, and learning factors. For some simple telemanipulation

tasks, monocular depth cues and cognitive depth cues from knowledge and learning may be

enough for successful and reliable performance, and there will be no advantage in using stereo-

scopic display. 15 However, for some complex tasks, monocular and cognitive depth cues may be
insufficient or unavailable for successful performance with monoscopic display, and the use of

stereoscopic display could significantly enhance performance. In our experiments, monocular

depth cues were minimized, and target positions were randomly arranged to minimize learning

effect. Consequently, our experimental results showed that pick-and-place performance with

stereoscopic display was superior to monoscopic display when visual-enhancement depth cues

were not presented.

Our results also showed that when reference lines were presented for visual enhancement,

monoscopic display performance with adequate perspective parameters was equivalent to stereo-

scopic display performance. In order to present reference lines on the monoscopic display, 3-D

position information of the displayed objects must be available. In a graphic display of current
manipulator and camera positions, 3-D position information is normally available via joint position

sensors, and reference lines can be easily provided. In a television image display of the working

environment, only camera views are normally available for 3-D position information. Under cur-

rent technology, a machine vision system that extracts 3-D position information of each pixel in
real time from a stereo camera view is too difficult to construct, 25 although the human visual sys-

tem can easily produce a 3-D image from a stereoscopic view. However, a special-purpose,

machine-vision system that extracts 3-D position information of only some salient points in real
time from a stereo camera view can be built. Then, reference lines for these points can be pre-

sented or superimposed on the monoscopic television display for enhanced teleoperation.

CONCLUSION

Results of the perspective parameter experiments indicate that in order to attain good perfor-
mance with a monoscopic perspective display, adequate parameter values should be chosen. For
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example, extreme elevation angles or excessive azimuth angles result in very long mean completion

times. Results of the visunl-enhancement experiment indicate that the horizontal grid does not

appear to improve pick-and-place performance in our task. The vertical reference line, however,

was significant in improving performance with monoscopic perspective display. When the mono-

scopic display was defined with appropriate perspective parameters and provided with adequate

visual-enhancement depth cues such as reference lines, the monoscopic display allowed pick-and-

place performance equivalent to that of the stereoscopic display. Stereoscopic display showed

short mean completion times over all visual display conditions regardless of the presence of the

grid or the reference lines.

Strong similarities were observed between the mean completion time results of the three-axis

pick-and-place experiments for various display conditions and the normalized rms error results of

the three-axis manual tracking experiments reported previously. This demonstrates that the effects
seen are robust and not task-dependent.
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SUMMARY

Performance in a discrete aiming task was compared under several transformed visual/motor

mappings: rotations by 45 ° , 90 °, 135 ° , and 180 ° and reflections about the horizontal and the verti-

cal midlines. Eight aiming targets were used, corresponding to eight directions of movement: up,

down, right, left, up-right, down-left, up-left, and down-right. Direction of movement effects
were characterized in terms of separable visual and motor direction components, and two kinds of
direction of movement effects were considered. First, a direction of movement effect paralleling

that seen in rapid aiming under the usual nontransformed mapping might be seen. If it is seen for
motor directions, but not visual directions, then this supports a motor factor hypothesis for the

effects seen under the nonlxansformed mapping. Second, because rotations, but not reflections,

are physically realizable two-dimensional (2-D) transformations, a visual/motor control system

which is sensitive to physical constraints should perform reflections, but not rotations, in a piece-

meal fashion. Results supported the hypothesis that a motor factor having to do with complexity
of limb movement accounts for differences in movement accuracy between right and left oblique
directions. Direction of movement effects were more evident in reflections than in rotations, and

were consistent with the hypothesis that the visual/motor-control system seeks a physically realiz-

able 2-D rotation solution to reflections. Results also suggested that reversal of two orthogonal

basis dimensions is far less difficult than reversing only one and leaving the other intact.

INTRODUCTION

This research investigates directional nonuniformities in the performance of a 2-D discrete

aiming task, under transformed mappings between visual and motor spaces. Various rearrange-

ments of the visual/motor map have been studied over the years (see Howard, 1982, for an excel-

lent review). This work has focused primarily on the process of adaptation to visual/motor trans-

formations. The present research, in contrast, compares the effects of different transformations
and examines direction of movement effects within and between different transformations.

Direction of movement effects (DMEs) have important implications for our understanding of

human visual/motor control. If there is nonuniformity in performance under physically uniform

conditions, this reveals something about the organization of the internal representation of external

space and about the mechanisms involved in visual/motor control. DMEs also are of practical

importance because they can lead to biases in an operator's input to a system. Such biases are not

easily detected when evaluating overall performance of the task, because they involve only a subset

of the inputs. Understanding this source of bias would allow the development of systems that

prevent biases or correct for them during operation.
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In this research, visually guided aiming has been studied under two kinds of transformation

of the usual directional mapping between a horizontal input surface (motor space) and a vertical
display screen (visual space), which is such that:

Right-> Right
Left -> Left

Forward -> Up
Backward -> Down

This mapping is a natural one that humans as young as 3 yr of age can do immediately without any
period of adaptation. This mapping will be referred to as the "usual" or "nontransformed"
mapping.

The transformations that were studied constitute a subset of the linear orthogonal transforma-

tions. They were 1) rotations about the center of the space and 2) reflections about axes in the

space. Rotations and reflections both preserve line length, angles, and parallelism of points in the

original space when mapped into corresponding points in the image space. In general, the
expression:

TX =X t

describes a transformation, T, of points X = [x y] in the original space into points X' = [x' y']

in the image space. In this research, T took one of the following forms:

-cos(0)
TROT= sin(0)

•

-sin(O)]

cos(O) J

These transformations represent, respectively, rotation about the center of the 2-D space by angle
q, reflection about the horizontal midline of the space, reflection about the vertical midline, and

reflection about a 45 ° line going through the center of the space.
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METHODS

Six right-handed subjects performed a discrete aiming task with multiple possible target

positions. The visual display was a vertical CRT screen and the motor input was movement of a

hand-held stylus on a horizontal digitizing tablet. There were eight possible target positions,

arranged at 45 ° intervals around the center. An aiming trial consisted of 1) the subject aligning the

cursor with a marker at the center of the display screen; 2) a cueing tone sounding; 3) after a vari-

able foreperiod (250 to 750 msec), a target appearing in one of the target positions; 4) the subject

capturing the target by moving the cursor into alignment with it; and 5) the target extinguishing.

Subjects were instructed to emphasize accuracy over speed and to execute as straight a trajectory as

possible on every trial.

Each experimental session consisted of 32 baseline trials under the usual mapping, followed

by 128 trials under one of the six transformed mappings: rotation of 45 °, 90 °, 135 °, or 180 °, or
reflection about the vertical midline or about the horizontal midline. Transformations of the motor

space relative to the visual space were effected using a combination of software manipulation and

physical rotation of the digitizing tablet.

Root-mean-squared error (RMS ERROR) measured the deviation of a trajectory from a

straight line and is reported here as the measure of difficulty experienced by subjects under the

various visual/motor mappings. Reaction time and angular error of the initial segment of the tra-

jectory were also obtained on each aiming trial, and are reported elsewhere (Cunningham, 1987a).

HYPOTHESES

Two aspects of DMEs were considered, and they correspond to two specific questions that

were asked. First, can DMEs observed under transformed mappings help us to understand DMEs

observed under nontransformed mappings? Previous work by this author (Cunningham, 1987b)

has shown that under the nontransformed mapping, movement in some directions produces more
error than movement in others. Specifically, among right-handed subjects movement along the left

oblique produces more error than movement along the right oblique, and horizontal movement

produces more error than vertical movement. Are these directional nonuniformities due to proper-

ties of the motor system or to nonmotor properties of visual or cognitive processes? Under the

nontransformed visual/motor mapping, motor direction and nonmotor direction are congruent (i.e.,

confounded). Testing left-handed subjects will not disconfound them because it is possible that

left-handers have reversed lateralization of information processing at many levels, not just in the

motor system. Transformation of the visual/motor mapping, however, allows us to disconfound
motor and nonmotor factors because directions of movement are no longer aligned in the usual

way. Under a 90 ° rotation, for example, the visual right oblique becomes the motor left oblique,

and vice versa. Under a 135" rotation, visual vertical corresponds to motor right oblique, and so

forth. Thus it was asked: Will the expected pattern of DMEs be observed under transformed

visual/motor mappings and, if so, will it be observed in display directions only (visual), in tablet

directions only (motor), or in both?

The second question arises from considerations of the properties of the two kinds of trans-

formations studied in this research: rotations and reflections. These are both linear orthogonal
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transformations,andsoaremathematicallysimilar. Theydiffer, however,inoneimportant
respect:theyarenotequallyphysicallyrealizableoperations.A rotationof pointsona2-D surface
is arigid motionthatcanberealizedin two dimensions.A reflectionof pointsona2-D surface,
however,isneitherrigid norphysicallyrealizablein two dimensions.Are themechanisms
responsiblefor visual/motorcontrolsensitiveto thisdifference?If so,performanceunderreflec-
tionsshouldbequalitativelydifferentfrom thatunderrotations.Specifically,it wasasked:Is
directionalnonuniformitymorelikely to occurunderreflectionthanunderrotationasthesystem
seeksaphysicallyrealizablesolutionto thetransformation?

RESULTS

Transformation condition exerted an important influence on aiming error. On average, the
four rotations differed both from one another and from the reflections. The condition which pro-

duced the highest average RMS ERROR was the 90 ° rotation. This was followed by the two
reflections (which were the same) and the 135 ° rotation. The 45 ° and 180 ° rotations produced the

least error and were similar to one another. These averages are for all movement directions under a

particular transformation, and they are consistent with results obtained by other investigators in a
three-dimensional tracking task under transformed visual/motor mappings (Kim et al., 1987).

DMEs were also seen under both kinds of transformation, but they were qualitatively different

under rotation and reflection. In figure 1, RMS ERROR under the four rotation conditions is

plotted against axis of movement: horizontal (fight and left), vertical (up and down), fight oblique

(up-right and down-left), and left oblique (up-left and down-fight). Axes of movement correspond
to directions of movement on the tablet (motor direction), irrespective of display direction. The
vertical offset of the curves for each condition indicates the overall effect of the transformation

condition. The expected right oblique/left oblique difference is seen for the 90 ° and 135 ° rotations.

This is also true for the 45 ° condition, although the scale of this plot makes the difference less
obvious. The horizontal-vertical difference seen under nontransformed mapping was not pre-

served in either visual or motor coordinate systems under rotation.

An interesting and very different pattern of DMEs emerges under the reflection conditions.

Figure 2 shows RMS ERROR under a reflection about the horizontal midline. Note that under

this transformation, the horizontal axis (axis of reflection) is preserved: direction of travel along

the axis is the same as under the nontransformed mapping. The vertical axis is reversed. The right

and left obliques are exchanged, which is equivalent to rotating each of them by 90 ° . The surpris-

ing result shown in this figure is that the axis along which sign is preserved (right and left) has

considerably higher aiming error than that along which sign is reversed (up and down). The axes
corresponding to 90 ° rotations also exhibit high error.

Figure 3 demonstrates that this effect is also seen under the reflection about the vertical axis.

Here, vertical axis movement is preserved as in the nontransformed mapping, and the error for
movements along that axis is high. The horizontal axis is reversed, and error for movements along

that axis is low. Again, error for movements along the other two axes is also high. The signifi-

cance of direction of movement under reflections appears to relate not to the orientation of a move-

ment axis in external space, but rather to its orientation with respect to the transformation per-

formed on the space.
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PRELIMINARY DISCUSSION

DMEs were observed under both rotation and reflection transformations. Under rotation, the

pattern of results for right versus left oblique confirmed a probable motor locus for the right

oblique advantage. This was seen in three out of the four rotation transformations and was espe-
cially strong in those where the overall error is high (90 ° and 135 ° rotations). This motor effect is

consistent with the fact that movement along the right oblique can be done with arm movements

from the elbow, whereas movement along the left oblique requires movement from the shoulder.

Movement from the shoulder involves more joints and the control of more mass than does move-
ment from the elbow.

The DMEs seen under reflection are qualitatively different from those seen under rotation.

They are also large. Under reflection, the reversed axis has the lowest aiming error, and the two

oblique axes have the highest. The error along the axis of reflection was surprisingly high, con-

sidering that the reflection transformation preserves that axis entirely. To what may we attribute
these directional nonuniformities seen under reflection? There are two separate questions to

answer:

1. Why do the oblique axes exhibit higher error than the nonoblique axes? Is it because they

are oblique or because they are transformed by the equivalent of a 90 ° rotation?

2. Why do the preserved axes exhibit greater error than the reversed axes?

Another Transformation: Oblique Reflection

In order to answer the first question, an additional condition was run: reflection about an

oblique axis. Under this reflection, the right oblique was the axis of reflection and so was pre-

served. The left oblique was thus reversed. The horizontal and vertical axes were exchanged for

one another, which is equivalent to a 90 ° rotation of each of them. Figure 4 shows the result of
this reflection. Observed DMEs are consistent with those found under horizontal- and vertical-axis

reflection. The reversed axis exhibits low error and the preserved axis exhibits high error. The

axes whose transformation is equivalent to a 90 ° rotation also exhibit high error.

GENERAL DISCUSSION

DMEs were observed under several different transformations of the usual mapping between

visual (display) space and motor (input) space. Two types of DMEs were seen. First, aiming
error was lower for right oblique motor directions than for left oblique motor directions, irrespec-

tive of visual direction. This supports the hypothesis that the right oblique "advantage" seen under

nontransformed visual/motor mapping is due to motor factors. A tendency for vertical error to be

lower than horizontal error under the nontransformed mapping was not seen in either the motor or

the visual directions under the transformed mappings.

DMEs also differed qualitatively between rotations, on the one hand, and reflections, on the
other. Under reflection, DMEs are related to an axis of movement's orientation with respect to the
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axisof reflection,notwith respecttoextemalspace.Thefact thathumanperformanceexhibitsthis
particularkind of directionalnonuniformityunderreflection,butnotunderrotation,isconsistent
with thehypothesisthatthehumanrepresentationof 2-D spaceisconstrainedbyphysicalrealiz-
ability. Thepatternof DMEsunderreflectionsuggeststhatthehumanimposesa2-D rotation
solutionon thereflectioncondition.Axeswhosetransformationisequivalentto a 180° rotation
exhibit lesserrorthanthosewhosetransformationis equivalentto a90° rotation,just asa 180°
rotationof theentirespaceproduceslesserror,in all directions,thana90° rotationof theentire
space.

Anotherinterestingaspectof theDMEsfoundunderreflection(andonewhichcomplicates
somewhatthe2-D solutionhypothesis)is thestrongtendencyfor thereversedaxesto exhibit
lower errorthanthenonreversedaxes.Thiswasseenin everyreflection. This is probablydueto
errorcorrectionduringmovementexecution.Duringexecutionof a movement,subtlecorrections
arerequiredto keepthetrajectoryonastraightpathtowardthetarget.Fora straight-linetrajectory,
correctivemovementswill havealargevectorcomponentin thedimensionorthogonalto the
straight-linepath. Underreflection,whenmovingalongtheaxisof reflection(thepreservedaxis),
theorthogonaldimensionis reversed.Thesmall,quick,andlargelyautomaticcorrectionsmade
duringmovementexecutionwill initially bein thewrongdirection. As theerrorisdetected,further
automaticattemptsto correctit mayresultin enhancingit instead.This is equivalentto reversing
thesignof afeedbackloopandtheresultis similar: error"blowsup." In thecaseof movement
alongthereverseddimension,theorthogonaldimension(dimensionof correction)is preservedand
soautomaticcorrectionsreducetheerrorastheyshould.

In summary,DMEsareintrinsic to discreteaimingona2-D surface.Themechanisms
responsiblefor visual/motorcontrolaresensitiveto motorfactorshavingto dowith thenumberof
joints involvedin movementin agivendirection.Theyalsoappearto beconstrainedto find 2-D
physicallyrealizablesolutionsto visual/motortransformations,evenwhenthesesolutionsdonot
exist.
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Figure 2.- RMS ERROR plotted against direction of movement for eight directions. The horizon-

tal axis (fight and left) is preserved and the vertical axis (up and down) is reversed. Oblique

axes correspond to a 90 ° rotation. Note that the oblique axes have the highest error, the

reversed axis the least, the preserved axis intermediate. Note also that the "motor oblique

effect" is present (fight and left obliques are exchanged).
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Figure 3.- RMS ERROR plotted against direction of movement under reflection about the vertical

axis. The pattern of errors with respect to the oblique axes, the preserved axis, and the

reversed axis is essentially the same as that seen under horizontal reflection.
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Figure 4.- Under reflection about the right oblique axis, the reversed and preserved axes are the

obliques. Yet the same pattern of error is seen: reversed axis exhibits low error, and pre-
served axis and 90 ° rotation axes exhibit high error.
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SUMMARY

Visual displays drive the human operator's highest bandwidth sensory input channel. Thus,
no telemanipulation system is adequate which does not make extensive use of visual displays.

Although an important use of visual displays is the presentation of a televised image of the work

scene, this paper will concentrate on visual displays for presentation of nonvisual information

(forces and torques) for simulation and planning, and for management and control of the large

numbers of subsystems which make up a modern telemanipulation system.

INTRODUCTION

Teleoperation consists of the control of a remote manipulator in order to perform mechanical

actions usually associated with the function of the human arm and hand. This extension of manual

dexterity to hostile environments requires high sensory feedback bandwidth to replicate perceptual

inputs normally available to the human.

Augmented by computers and advances in robot sensor development, the application of teleop-
eration has been extended to the areas of deep sea, underground, and space exploration. Future

space missions will require a more advanced teleoperator with automation capability to perform

many new tasks including satellite retrieval or repair, space station construction, and payload

handling (ref. 1).

Visual displays drive the human operator's highest-capacity input channel, allowing an impor-
tant means of closing the dextrous manipulation loop. The televised image of the work scene

affords the operator an important means of receiving qualitative and nonsymbolic quantitative
information about the work environment. This type of display has the advantage of providing

information in a natural, unencoded form, but can suffer from perspective ambiguities if any

parameters such as the viewing angle, lighting conditions, display resolution, refresh rate, or
reference frame are ill chosen (refs. 2 and 3). Additionally, televised display can rapidly exhaust

the available transmission data rates in the downlink. Displays which represent the state variables
in encoded form offer a much more efficient use of the downlink if their chosen form can be

quickly decoded and easily understood by the human operator.

There are many important parameters to be displayed in telerobotic displays. Displays can

provide information about the proximity of the end effector to goals and obstacles (ref. 4); the
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forcesandmomentsexertedatthewrist frameof the manipulator (ref. 5); the current configuration

and work envelope of the manipulator relative to objects in the task space, including regions near

manipulator singularities that should be avoided; and mass distribution of objects in the
environment.

This research was performed at the Jet Propulsion Laboratory, California Institute of Technol-

ogy, under contract with the National Aeronautics and Space Administration.

Force Torque Displays

A long-term effort in our laboratory has focused on the display of forces and torques arising
from a remote manipulator's interaction with the environment. Visual displays complement the

ability of force-feedback master manipulators when time delay, or control-station constraints pre-
clude such aids. We have developed and evaluated several graphical formats through which this

nonvisual task space information can be presented including horizontal bar graphs (ref. 5), so-

called "star diagrams" (ref. 6), and various enhancements such as color coding, event-driven flags,

and true perspective presentation. The star diagram display has recently been tested in over 21 hr

of experimental teleoperation with resulting guidelines for future system design.

Simulation

An Iris graphics workstation has served as a graphics engine for a number of simulation dis-

plays used for kinematic analysis of proposed telerobotic task scenarios. Examples include an

animated simulation of a dual-arm, satellite-servicing task and a detailed simulation used for analy-
sis of arm-base location and position in a dual-arm teleoperation laboratory. These perspective

displays can be interactively rotated and zoomed in and out to give three-dimensional information

to the operators without the problems of stereo displays. Visual enhancements such as color cod-

ing, reference grids, and manipulator work volume projections are used in place of binocular cues.

Executive Control Displays

In a full telerobotic system, a very large number of subsystems and capabilities need to be con-

trolled. In full systems, these will include two arms, hand controllers, and smart hands; trading

and sharing of control between autonomous and telerobotic modes; and control of cameras, light

sources, and other sensory systems. The traditional solution of large racks of subsystem control
panels attended by a dedicated operator can be improved upon with an executive workstation which

can communicate with all subsystems over a local network such as Ethemet. Recent exploration

work has developed a prototype display architecture based on the desktop metaphor built into

workstations such as the Macintosh or Sun. Icons representing each of the subsystems to be

controlled populate a workstation screen representing the control domain. The key feature is that

an operator can selectively attend to one of a large number of subsystems by selecting (clicking) its

icon. The icon expands into a software control panel which displays the subsystems' status and

accepts commands. Alarm conditions can be indicated on the icon to alert attention to the particular
subsystem.
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Telemanipulationdisplaysarenotlimitedto on-linesituationsduringtaskexecution.Theycan
providepredictiveinformationabouttheoutcomeof givenoperator-controlactionsif themanipu-
latorandenvironmentalcharacteristicsaremodeled(refs.7 and8), aswell asaplay-backfor
postmortemanalysisof operatorperformance.Off-lineuseof all previousmodeswith theaddition
of environmentalmodelingallowsfor trainingof operatorsin routineactivitieswith a minimum
investmentin hardwareandlow risk of damageto trainingfacilities. Thesuccessof thisapproach
canbeseenin thewidespreadacceptanceof flight simulatorsasatrainingtool for commercialand
military pilots. Currently,onevalidated,high-fidelity,real-timesimulatorfor spacetelemanipula-
tionexists,theShuttleremotemanipulatorsimulatorattheJohnsonSpaceFlightCenter(ref. 9).

Thispaperreportstheresultsof displayresearchanddevelopmentattheJetPropulsionLabo-
ratoryAdvancedTeleoperatorDevelopmentLaboratoryin threesections:displaysof forceand
torquedata;perspectiveprojectiondisplaysof simulatedmanipulatorsandtaskenvironments;and
executivecontrolof complextelemanipulationsystemsbydirectmanipulation.

Force/Torque Information

Whenarobotmanipulatorinteractswith theenvironment,forcesandtorquesareexertedatthe
contactpoints. Informationfrom theloadcellsin therobot "wrist" canberesolvedinto three
forcesandthreetorquesrepresentingtheinteractionbetweenmanipulatorandenvironmentas"felt"
in thewrist. Thespecificcoordinatesystemfor thisresolvedinformationis arbitrary,buta useful
oneis to resolvethethreecomponentsof forcealongthex, y, andz axes,andthethreecompo-
nentsof torqueto thepitch (x), yaw(y), androll (z) axesof themanipulatorhand.

Althoughconsiderableattentionhasbeenfocusedonusingbackdrivablemastermanipulatorsto
providecontactforce informationto theoperator,therearecaseswherethisdirectinformationis
insufficientor impractical.In particular,visualdisplayscomplementtheability of force-feedback
mastermanipulatorswhentimedelay,numericalaccuracy,or control-stationconstraintspreclude
suchaids. Graphicaldisplayscanalsoindicatetask-specificconstraintswhichmustbesatisfied
duringmanipulationandwhethertheconstraintsaremet. Our laboratoryhasdevelopedandevalu-
atedseveralgraphicalformatsthroughwhichthis inherentlynonvisual,butspatial,informationcan
bepresented(fig. 1).

Themostbasicformat,developedfirst, is asetof horizontalbargraphsin which eachof the
six forcesandtorquesis displayed(fig. la) (ref. 5). This typeof displayhasbeentestedin our
laboratory(ref. 10)andin thesimulatedSpaceShuttlecargobayattheJohnsonSpaceFlightCen-
ter (ref. 9)whereit hasbeenshownto reducethemagnitudeanddurationof forcesrequiredto
completeatask. However,thehorizontalbargraphdisplayfails to representthespatialcontentof
theforce/torqueinformationbecausetheassignmentof theforcesandtorquesto thebarsis essen-
tially arbitrary.

In theJPL-OMV (OrbitingManeuveringVehicle)smarthand(ref.6), animproveddisplaywas
developedwhichrepresentedaprimitiveperspectiveviewof theunit vectorsmakingup thehand
referenceframe(fig. lb). Torqueswererepresentedby bargraphscrossingtheappropriateaxes.
This typeof displaywastestedin over21hr of experimentallyrecordedteleoperationwith opera-
torsof variousexperiencelevelsperformingsimulatedsatelliteservicingtasks(ref. 11).
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In theseexperiments,theJPL-OMVsmarthandwasmountedon thePrototypeFlightManipu-
latorArm (PFMA) atMarshallSpaceFlightCenter,andoperatorsperformedtask-boardoperations
from aremotecontrolroom. Theoperatorswereprovidedwith threecameraviewsof thescene,a
six-axis"joyball" controller(ref. 12),andthepreviouslydescribedstardisplayof forcesand
torques.Taskperformancewasmeasuredin termsof RMSforces/torquesrequiredto performthe
task.Low RMSforces/torquesindicatedtheabsenceof forcingandjammingof thetoolandthus
bettertaskperformance.Forceandtorquedisplaywasavailableto theoperatorsin selectedtrials
andcomparativeforcecontrolperformancewasmeasuredfor thetwocases.Althoughoperators
reportedthatthevisualforce/torqueinformationwasuseful,nosignificantreductionwasobserved
in task-relatedforcesandtorques.

Whenanearlierversionof this display was tested on the space shuttle RMS simulator

(ref. 13), reductions in forces were demonstrated. This discrepancy can be attributed to the rela-
tively poor position-control performance of the PFMA and its high stiffness, versus the highly

accurate position control capability of the RMS and its low stiffness. In the absence of true force-

control capability, operators apparently adopt a strategy of controlling forces by commanding small

position increments against the stiffness of the manipulator and load.

This type of indirect control strategy demonstrates that in the case of telemanipulation, it is very

difficult to evaluate displays in isolation--especially in terms of overall task performance.

A further display refinement is to generate a three-dimensional bar graph in which the magni-

tude of each force component is displayed in the direction of its unit vector. Torques are displayed

as circular bar graphs centered on the axes. This display has been rendered in color and true per-

spective on an IRIS graphics workstation (fig. lc). Evaluation in use awaits integration of the
IRIS with actual telerobotic hardware.

Event-Driven Displays

We are currently developing enhancements to improve these force/torque displays. In many

tasks, the desired outcome is to perform a manipulation subject to specific constraints. For exam-

ple, the task may be to press on a latch such that z-axis force is greater than or equal to 10 lb and x

and y forces and all torques are less than 1 lb (or ft-lb). The burden of checking these constraints
can be removed from the operator by a set of display primitives which indicate the constraints on

each axis and a global flag indicating that all constraints are satisfied. These "event-driven" dis-

plays also have served to combine information from proximity, tactile, and force/torque sensors
(refs. 14 and 15).

This concept has been tested with a light-emitting diode (LED) version of the star pattern dis-

play at Johnson Space Center (ref. 5) and has been added to the OMV smart-hand display.

One key issue is the value of detailed visual force/torque information to the operator relative to

other visual information sources, especially cameras. Future experimentation will address this

question by forcing the operators to choose among display sources and recording relative fre-

quency of selection of each display. A cost will be imposed for switching between sources to pre-

vent the adoption of a scanning strategy. Thus, for example, operators will attempt to minimize a

time score for completing a manipulation task, but will be penalized 1 sec each time they switch
from the various displays.
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In presentforce/torquedisplays,theoperatormusttransformthedisplayfrom thehandframe
tothestaticframefor thedisplay.Themanipulatorcontroldeviceisusuallyreferencedto task
spaceandtheoperatorcanbeassumedto mapthevariouscameraviewsto amentalmodelof the
taskspace.Knowledgeof thepositionandorientationof themanipulatorendeffectorin taskspace
isrequiredto performthismapping. Incorporatingthismappinginto atask-spacedisplaypresents
thetechnicalissueof interfacingthehandelectronicsto themanipulatorcontrolsystem(to provide
taskspacepositionandorientation),andthedesignissueof howto presentthetask-spaceinfor-
mation. Alternativesbeingconsideredareto transformthestardisplayto theend-effectorposition
andorientation,transformit againto theviewplaneof oneof thecameras,andsuperimposeit on
thecameraview. Anotherpossibilityis to createasyntheticdeformableobjectsuchasastriped
cylinder,locateit atthemanipulatorwrist, anddeformit accordingto theforcesandtorquespres-
entatthewrist. A displayof thedeformedcylindersuperimposedon thevideoscenewouldgive
aneasy-to-grasp,intuitive pictureof themanipulator'sinteractionwith its environment.

Real-Time Perspective Simulation

Simulation presents an effective means of developing teleoperator systems, can provide valu-
able feedback during the use of such a system, and can be an effective design tool.

In our laboratory setup, a universal 6 degree-of-freedom, force-reflecting hand controller

(FRHC) is used as master and a PUMA 560 robot is used as slave. The kinematics and dynamics

of both arms are extensively studied and described in the literature (refs. 16 and 17). Two

National Semiconductor NS-32016 microprocessors were chosen to control the FRHC and the

PUMA arm, respectively. The distributed control and interface information is detailed in refer-
ence 18. A real-time simulator also was built in parallel with the distributed control system to

facilitate human control performance studies, hardware/software checkout, and operator training.

The real-time simulator (fig. 2) consists of almost all the hardware of the complete telemanip-

ulation system except that the PUMA manipulator is replaced by the computer graphic simulation.

The 6 degree-of-freedom FRHC is the key interface between the operator and the control station.

It provides the necessary force feedback to the operator and is equipped with six optical encoders

for position sensing and six motors for backdriving the operator. The control-station processor
interprets the encoder values and converts them into joint angles. It then performs forward kine-
matics calculations to determine the end position of the FRHC in the work space and then transmits

those position commands to the remote station. The remote processor receives the position com-
mand from the control station, computes inverse kinematics of the PUMA arm, and determines the

desired joint angles which are sent to the graphics processor for animation. The Silicon Graphics

IRIS work station is employed for the graphics generation and display. It animates the movements

of the PUMA arm in color graphics and provides the task-simulation environments.

The requirements for the display are that animation be generated at a rate high enough that the

simulation appears continuous and realistic to the operator. The Silicon Graphics IRIS 2400 is a

UNIX-based graphics workstation which uses a highly pipelined display architecture. The
IRIS 2400 contains several VLSI hardware graphics processors known as geometry engines

(ref. 19). These are capable of performing basic graphics operations, such as matrix transforma-

tions, clipping and mapping to device coordinates at a rate of approximately 65,000 three-

dimensional, floating-point coordinates per second. The geometry engines are arrayed to form the
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graphics pipeline, with a 68000 microprocessor used as a low-level pipeline manager. The host

processor for the geometry pipeline is a 68010 which communicates with it over the multibus. The

geometry engines are accessible via the C graphics library provided with the system. This library

enabled high-level operations such as coordinate frame and polygon definitions to be specified
from within the Applications Program.

The PUMA-560 model was created into two steps. The constituent graphical objects such as
the links and base were defined relative to their own coordinate frames. Appropriate coordinate

frames were then developed for each link in a fashion similar to the Denavit-Hartenberg link speci-

fications. Links were subsequently displayed in their appropriate coordinate frames, thus forming
the complete model of the robot. The necessary link parameters were found in Craig (ref. 17).

The frame transformations for the forward kinematics of the PUMA were inherent to the

graphical model of the PUMA. Robot motion animation was achieved by varying the appropriate

link parameters, i.e., the joint angles, and rapidly redrawing the robot model according to these
new values.

The capability to perform high-speed graphics computations permitted the display of a model of

intermediate complexity at approximately a 10-Hz refresh rate, including input/output operations.
Data are sent from the hand controller to the IRIS in 16-bit binary form over the RS232 serial
interface.

Hidden-surface elimination was investigated, but not implemented in this version of the simu-

lation display because of speed constraints. Several fast software algorithms for hidden-surface

elimination exist. The general principle involved is to presort the polygons composing a static

object before they are displayed. Unfortunately, while these techniques work well for a roving
viewpoint and static objects, the links in the PUMA model are constantly changing their position
relative to each other and thus their constituent polygons are not presortable.

There are many applications for the graphics simulation of the PUMA 560 running on the IRIS

workstation. Of most value is its use as a debugging tool. Many software modules developed for
control of the manipulator can be tested and debugged using the graphics simulation without

actually using the manipulator. In general, the simulation allows its users to test-control software

when the actual manipulator is not available, or its design is not yet finalized. Different manipula-

tor geometries can be explored for functionality before they are actually prototyped. This flexibility
is true for hand-controller design as well.

The simulation also can be used as a tool for training teleoperator system operators. Fictitious

objects can be introduced into the virtual work environment so that operators can practice pick-and-

place tasks as well as more complex operations without endangering hardware. Using the IRIS

system's ability to clip against an arbitrary plane, end-effector collision with objects in the virtual

environment could be detected and indicated in real time. This feature will assist the operator in
practicing teleoperation and collision avoidance.

When a significant time delay in communication exists between the controller and manipulator

(e.g., Earth-based control station commanding a geosynchronous satellite servicing teleoperator) a

graphic simulation could become valuable in enhancing operator performance. By overlaying a

stereoscopic wire-frame view of the manipulator on the stereoscopic television image of the task

space, a predictive display can be obtained (ref. 20). This allows the operator to immediately
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realizetheramificationsof his/heractionsbeforeactuallyperforminganoperation.Commands
couldbebufferedandthensentoncetheoperatoris surethatnodamagewill resultfrom given
actions.

Teleoperator Laboratory Design Simulation

We have also used perspective displays as a design tool to explore various layouts for a dual-

arm telemanipulation laboratory. These simulations (fig. 3a) allowed the designers to specify robot

base location and posture (elbow up/down, shoulder in/out, etc.) in a model of the actual labora-

tory space. A grid placed on the floor represents the actual floor tiles so that the simulation can be

easily related to the actual space. A projection of the maximum extent of each robot's work volume

was drawn on the floor grid. The intersection of the two work-volume projections gives an idea of

the cooperative work volume of the two robots. Note that the work volume is a function of arm

configuration if arm flips are not allowed. Another important design issue directly addressed by

this display is the visibility of the task space and especially the manipulator end effectors by the
operator (in direct operation from the control station) or from a particular camera. Because the

viewpoint of the simulation can be changed dynamically, designers can view the robots from any

contemplated control station or camera mount. On the basis of this simulation, the plan shown in

figure 3 was shown to have higher cooperative work volume and better sight lines from the

operator control station than a competing plan.

Simulated Satellite Servicing Animation

Autonomous task-sequence simulation takes the static scene simulation a step further by adding

the element of time and order of subtask execution. Our application is an animation of two robots

performing the replacement of an attitude-control system on the Solar Max Satellite (fig. 3b). This
is the chosen scenario for the 1988 telerobot demonstrator project at JPL. The simulation is adapt-

able to a variety of tasks, and could take input from artificial intelligence task planners to provide a

means of human verification of the output of autonomous subsystems.

Executive Control Displays

A complete telemanipulation system requires far more interaction with operators than that

required for the purely manipulation components of a task. Considerable human interaction over-

head will be required to control cameras, select system operating mode, attend to error conditions,

start up and shut down the system, and hand off control between teleoperation and automatic oper-

ation. Many of today's telemanipulation systems require a second operator and control station to

perform these "executive" functions. The nature of this task is to selectively attend to details of

whichever one of a large number of subsystems requires attention.

Desktop Control Station

The traditional approach to this executive control station is a console or series of racks filled

with a separate control panel for each subsystem. An attractive alternative is offered by a single
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controlstationconsistingof a largebit-mappeddisplaythroughwhichanoperatorcancontrolall of
thesefunctions.

We arecurrentlyprototypingsuchanexecutive-controldisplaywhichcompressesall
executive-controlfunctionsinto asinglehigh-resolutionworkstationscreen(fig. 4). Control
interactionwill takeplacebetweentheworkstationandthesubsystemsovera localareanetwork.

Thebasisfor thisdisplayis thedesktopdirect-manipulationenvironment(refs.21,22,
and23)asimplementedin theMacintoshandtheSunworkstation,andpioneeredin theSmalltalk
environment(ref. 24),whichevolvedfrom earlierwork suchasSutherland'sSketchpadsystem
(ref. 25). Theworkstationscreenrepresentsadomainwhich is populatedwith iconsrepresenting
thevarioussystems.Theoperatorcanexpandasubsystemiconto revealacompletecontrolpanel
for that systemcontainingbuttons,indicators,sliders,graphicsdisplays,andsoforth. Iconscan
bedynamicsothatalarmconditionscanreachtheattentionof theoperatorwhena subsystemis
closed.

We haveprototypedexamplesof iconsfrom suchasystemonaSunworkstation(atthedis-
playandhuman-interactionlevelonly). A controlstationbasedon thisconceptwill takeupmuch
lessspacethanaconventionalpanelrackandwill beveryflexiblewith respectto futureexpansion.
Operatorscouldeasilycustomizethedisplayto therequirementsof aspecifictask.

Interactionbetweenthemanipulationoperatorandtheicon-basedexecutivecontrolstationis
desirable,eliminatingtheneedfor asecondoperatorevenin two-handedteleoperation.In cur-
rentlyplanneddual-armteleoperationsystems,theoperator'shandsareoccupiedwithcontrolling
two slavemanipulatorsthroughsix-axis,force-reflecting,handcontrollers.Eitherhandcontroller
(dependingonoperatorpreference)couldbetemporarilychangedoverto controllingadisplaycur-
soron theexecutive-controlstation.

Hand Controller as Mouse

In this concept, the operator will press a button mounted on the hand controller, which will

lock the slave manipulator, or tum its control over to an automatic or intelligent control system.

Two degrees of freedom of the hand controller would then control the location of the cursor on the

executive control display. The hand-controller backdrive capability could be used for providing

detents indicating cursor position relative to the icons. This will provide an active assist in moving

the cursor to small icons or panel objects. Designation of display objects (analogous to clicking a

mouse button) will be accomplished by the hand-controller button normally used for gripper con-

trol. Other hand-controller degrees of freedom could be used to operate panel items such as knobs.

For example, to adjust an analog quantity such as a rate limit, the operator could move the hand
controller and thus a screen cursor to a picture of a knob representing the appropriate quantity. The

location of the cursor on the screen will be taken from the x and y coordinates of the hand con-

troller. In the immediate neighborhood of the "knob," the operator will feel a small force generated

by the control computer to represent the negative gradient of a small "potential function" on the
workstation surface. The potential function contains "wells" around each of the icons and panel

items. This force will guide the operator to the icon and correct small positioning errors. When
the cursor is over the knob, the roll axis of the hand controller would be used to change its setting.

Other types of icons would be operated by orthogonal hand-controller motions. For example, a
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toggle-switchicon wouldbeoperatedby thepitchaxis. Thisprovidesa measureof safetybecause
eachiconcanbeactivatedonly byaparticularhandmotion. Theiconsshouldbedesignedand
linkedto theaxesof handmotionsothewayto actuatethemis intuitive.

At theconclusionof theexecutivecontrolfunction,theoperatorwould resynchronizetheslave
manipulatorwith themasterandresumemanipulation.Thedetailsof thetransitionsbetween
manipulationcontrolandcursorcontrolarecomplex,but identicalin principleto thoseusedin the
indexingfunctionalreadydesignedinto suchsystems.
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(a) A simple set of horizontal bar graphs, one bar for each of the six axes of force and torque.

Figure 1.- Displays of force/torque information for telerobotics. Several formats have been devel-

oped and experimentally evaluated at JPL for the display of forces and torques encountered by

a remote manipulator to the controlling operator. Panels (a) and (b) represent monochrome

displays, (c) represents color.
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(b) A pseudo-perspective display in which the bar graphs are aligned with unit vectors representing
the direction of action of forces, and the roll, pitch, and yaw axes for torques.

Figure 1.- Continued.
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c) A true perspective, full-color display.

Figure 1.- Concluded.
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Figure 2.- Real-time simulation of a robot manipulator in telemanipulation. The wire-frame simu-
lation substitutes for the manipulator for software validation or operator gaining. The complete

telemanipulation system consists of a hand controller (left); control processors (not shown);

monochrome display; and optionally, robot manipulator (background). The display computer

is plug-compatible with the manipulator controller.
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Figure 4.- Executive-control display for a telemanipulation system. Icons representing each of the
many subsystems involved in a full, dual-arm, telemanipulation system are displayed on a sin-

gle monochrome workstation screen. Subsystems are controlled through a pointing device
operating simulated switches, sliders, and buttons. In conventional systems, these functions

are controlled by a second operator sitting at a large rack of hardware control panels. The

executive control display can eliminate the need for a second operator because the manipulation
operator can operate the display using the force-reflecting hand controller.
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IN

SUMMARY

Spatial display instruments convey information about both the identity and the location of

objects in order to assist surgeons, astronauts, pilots, blind individuals, and others in identifica-
tion, remote manipulations, navigation, and obstacle avoidance. Scientists believe that these

instruments have not reached their full potential and that progress toward new applications,

including the possibility of restoring sight to the blind, will be accelerated by advancing our under-

standing of perceptual processes. This stimulating challenge to basic researchers was advanced by

Paul Bach-Y-Rim (1972) and by the National Academy of Science (1986) report on Electronic Aids

for the Blind. Although progress has been made, new applications of spatial display instruments

in medicine, space, aviation, and rehabilitation await improved theoretical and empirical
foundations.

GAPS IN OUR UNDERSTANDING OF PERCEPTION-ACTION

RELATIONSHIPS

What is it that applied researchers want to know that basic researchers can't tell them?

Inadequacies of the present foundations are revealed by considering a discrepancy between

issues that are addressed by basic researchers in the field of perception and questions that are asked
by developers of spatial display instruments. These groups have different perspectives on two

major functions of our sensory system, which are 1) to provide a conscious representation of

spatial-temporal relationships, and 2) to guide our performance as we interact with our environ-

ment. Perception researchers concentrate on the fu'st of these functions, providing perceptual

impressions (subjective experiences) of objects or events such as apparent shape, size, orientation,

and movement. They describe how the world does appear to us, and they analyze the determinants

of our subjective experience of the world. In contrast, human factors engineers, clinicians, and

specialists in artificial intelligence develop spatial display instruments to enhance performance that

depends upon sensory information. Consequently, they ask questions about the second function

of the sensory system, guiding performance. Thus, there is a gap between the main issues that are

addressed by researchers in the field of perception and the information that is needed by developers

of spatial display instruments.

Ironically, this gap has gone unattended because a corresponding gap has existed for a long

time in researchers' understanding of the relationships between stimulus information, perceptual

impressions, and performance. One major approach to research, the direct perception approach,
bases its research on the untested assumption of a one-to-one correspondence between stimulus
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informationandperformance(e.g.,Gibson,1979;TurveyandSolomon,1983). Othermajor
approaches,mediatedperceptionapproaches,basetheirresearchonuntestedassumptionsabout
therelationshipbetweenappearanceandperformance.Experimentaltasksdependupontheavail-
ability of arepresentationof spatial-temporalrelationships,andit isoftenassumedthattherepre-
sentationuponwhichperformanceis basedcorrespondstoperceptualimpressionsof spatial-
temporalrelationships.Someparadigmscarrythisuntestedassumptionto anextremeby inferring
registeredvaluesof spacein onetaskfrom perceptualimpressionson adifferenttask(e.g.,Gogel,
1980).Accordingly,bothdirectperceptionresearchersandmediatedperceptionresearchershave
substituteduntestedassumptionsfor anempiricallybasedtheoreticalfoundationfor understanding
relationshipsbetweenstimulusinformation,perceptualimpressions,andperformance.

Previousliteraturesuggeststhattheserelationshipsarecomplexandvariablefrom situation
to situation.Duringnaturaleventsin information-richenvironments,theresometimesis aone-to-
onecorrespondencebetweenstimulusinformationandperformance(e.g.,LeeandReddish,1981;
Turvey andCarello,1986;Warren,1984)andtheresometimesis not (e.g.,Shebilske,1981,
1987a,1987b;Shebilske,Karmiohl,andProffitt, 1984).Thisvariability is complicatedbythe
factthatthereis nogeneralway to predictwhattherelationshipwill bein anygivennaturalevent.

Understandingtherelationshipbetweenperceptualimpressionsandperformanceis simi-
larly complicatednotonly byevidencethatthereareat leastthreemodesof perceptualimpressions
(Rock,1983)andthatinstructionscanaffectwhichoneof thesemodeswill correlatewith perfor-
mance(e.g.,Carlson,1977;Leibowitz andHarvey,1969;EbenholtzandShebilske,1973),but
alsoby thefindingof bothtightandlooserelationships.At oneextreme,thereis evidencefor a
verytight relationship(e.g.,Coren,1981). At theotherextreme,thereisevidenceof very loose
relationships.Examplesincludesubliminalpriming,whichis an "unseen"word facilitatingthe
recognitionof anotherword (Marcel,1983);blindsight,which is pointingat targetsthatcannotbe
"seen"(BridgemanandStaggs,1982);andparadoxicalperceptions,suchasapparentmotion
withoutapparentchangeinposition(ShebilskeandProffitt, 1983).

Attemptsto explainthisvariabilityincludeargumentsfor top-downinfluences.Forexam-
ple,Gogel(1977)statedthatobjectscanbecognitivelyjudgedto bein adifferentlocationthan
theyappearandthatperformancecanreflectthesecognitivejudgments.Bottom-upinfluences
havealsobeenproposed.ShebilskeandProffitt (1981)suggested,for example,thatapparent
motionsof a stimulusduringheadmovementsmightbebased"solelyonmotioninformationand
principlesof perceptualorganizationthatmakenouseof distanceinformation." Simultaneously,
thesamestimulusmightelicit pointingresponsesthatarebasedondistanceinformationfrom one
setof sourcesandsizeestimationsthatarebasedondistanceinformationfrom anothersetof
sources.

Theproblemis thatourempiricalandtheoreticalfoundationis inadequateto predictwhen
top-downand/orbottom-upinfluenceswill altertherelationshipsbetweenstimulusinformation,
perceptualimpressions,andperformance.Theconsequenceof this inadequacyis, at thevery
least,abottleneckin thetransferof informationfrom basicresearchaboutperceptionto applica-
tionsthatdependuponsensoryinput,suchasspatialdisplayinstrumentation.An evenworse
consequenceis thedangerof underminingpartsof ourbasicresearchfoundationthatarebased
uponuntestedassumptionsabouttheserelationships.
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ECOLOGICAL EFFERENCE MEDIATION THEORY

Operations for encoding sensory information should approach optimal efficiency in the
environment in which a species evolved, according to an ecological point of view (Gibson, 1979;

Shebilske and Fisher, 1984; Shebilske, Proffitt, and Fisher, 1984; Turvey, 1979; Turvey and
Solomon, 1983). Based on this axiom and the observation that efference-based and higher order

light-based information interact to determine performance during natural events, Shebilske (1984,

1987a, 1987b) proposed an Ecological Efference Mediation Theory of natural event perception.

According to this theory, both the phylogeny and the ontogony of the visual system are shaped by

internal state variables as well as by environmental variables. When the preceding discussion is

recast in terms of this theory, the question becomes: How can fluctuations in relationships

between stimulus information, perceptual impressions, and performance afford an adaptive advan-

tage relative to all the conditions to which humans are exposed? Attempts to answer this question

resulted in a hypothesis about Ecologically Insulated Event Input Operations (EIEIO). This EIEIO

hypothesis will be explained in the remainder of this essay.

The EIEIO Hypothesis

Humans are able to perform in a wide range of transient internal and external states. The

EIEIO hypothesis accounts for this flexibility by postulating separate input modules that are

molded by interactions of an organism with its environment in an attempt to achieve maximally

efficient performance of sensory guided skills within the prevailing internal and external states in

which the skill is performed. Schmidt (1987) reviewed the history of thought on the theme that

practice can change the way sensory information about the world is used to guide performance.
He started with William James' observation (1890) that practice of skills seems to lead to more

automatic, less mentally taxing behavior. This observation spawned considerable research leading

to evidence for three separate process level changes that seem to contribute to this practice effect as

follows: 1) tasks that are slow and guided shift from dependence on exproprioceptive information

to dependence on proprioceptive information (e.g., Adams and Goetz, 1973); 2) tasks that have

predictable parameters, such as predictable target locations in pointing tasks, shift to open-loop

control (e.g., Schmidt and McCabe, 1976); and 3) tasks that have unpredictable parameters shift

to fast, automatic, and parallel processing of the information needed to make decisions (e.g.,
Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977). The EIEIO hypothesis is a proposal

of a fourth manner in which practice can change the way sensory information is used to guide per-

formance. The proposal is that the bases for sensory guided performance can shift from conscious
representations of spatial-temporal relationships to EIEIO representations that do not correspond to

conscious perceptual impressions. In contrast to the other three mechanisms, which were identi-

fied through studies contrasting variables that are an integral part of the task, the EIEIO hypothesis

emerged from considerations of the various internal and external contexts in which skills are per-

formed. The EIEIO hypothesis encompasses five testable premises.

Premise 1. In addition to performance being guided by representations that correspond to

conscious perceptual impressions of spatial-temporal relationships, performance can also be guided
by one or more abstract, symbolic EIEIO representations of the same spatial-temporal

relationships.
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Premise 2. These EIEIO representations are insulated from each other and from the con-

scious one in the sense that they can be altered independently.

Premise 3. Differences between the accuracy, speed, and attention demands of EIEIO rep-

resentations result from: 1) separate selective attention mechanisms that result in the picking up

and processing of different potential sources of information, 2) different parsing routines that

result in sampling units of different spatial sizes and/or different temporal durations, 3) different
weightings that are used for various sources of information, and 4) different rules (e.g., rigidity

assumption) and/or different principles of processing (e.g., minimum principle) that are used.

Premise 4. Conditions leading to the development and use of EIEIO representations during

phylogeny or ontogeny depend upon interactions between an organism and its environment.
Modules for forming EIEIO representations will result when an organism has the opportunity to

perform the same skill repeatedly in an environment that 1) has contextual variability over a range

that is narrower than the entire range in which the more general system must operate and 2) pro-

vides an opportunity to learn that the conscious representation is less efficient than an alternative
one. The EIEIO representations that develop are utilized only when a skill is performed in the
environment in which it was learned.

PrCmis¢ 5. Whereas input operations corresponding to conscious representations are

designed to be maximally efficient over the entire range of contextual variability to which an
organism is exposed in its environmental niche, EIEIOs are designed to be maximally efficient

within a narrower range of contextual variability within which a particular skill is performed. This

premise is related to a familiar design for adaptability in biological systems. It is common to have a
relatively narrow range of sensitivity available at any one moment, but to have this narrow range

move over a much broader range in order to adapt to prevailing conditions. An example is light

and dark adaptation in which a relatively narrow range of sensitivity to light exists at any given

moment. But the absolute level of this momentary range can be adjusted up (light adaptation) or

down (dark adaptation). The proposed design of EIEIOs, however, has an important unique fea-

ture. Specifically, a conscious representation that is based on very generalizable input operations is
always available during normal waking consciousness as long as the stimulus information is above

the momentary sensory threshold (or signal-detection criterion). However, after an extended

opportunity to perform a skill under conditions that consistently have a relatively narrow range of

contextual variability of internal and external states, the function of the conscious representation in

guiding performance on that specific skill can be momentarily replaced by EIEIO representations

that are more efficient within the prevailing narrow range of contextual variability. For example,

gymnasts might be able to form more efficient EIEIO representations to guide their skilled perfor-

mance by having their input operations take advantage of the fact that their skill is always per-

formed in a well-lighted, highly structured environment. At the same time, the gymnasts would

retain the more generalizable input operations that would result in continual access to a conscious

representation at all times during normal waking consciousness, including whenever the gymnasts
darted in and out of all the environmental conditions with which humans can be confronted.

CONCLUSIONS

Progress toward realizing the full potential of spatial display instruments is limited less by

technology than by an inadequate understanding of perceptual processes. A bottleneck is
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encounteredin understandingtherelationshipsbetweenstimulusinformation,experiential
responses,andperformance.In previousarticles,I havetakenstandsagainstthepostulationof a
one-to-onecorrespondencein theserelationships,andI havearguedagainstdevelopmentof
theories,researchmethodologies,andapplicationsbasedon thispostulation.Here,I arguedfor
stepsaimedatdevelopingatheoreticalandempiricalfoundationfor understanding,predicting,and
controllingtheperception-actionlink.

I reviewedthreewaysthathavebeenproposedfor howperception-actionrelationshipscan
change.I thenprofferafourthway, theEIEIO hypothesis,which includedfive testablepremises
abouttheimpactof contextualvariability onperceptionandperformance.Testingthesepremises
in contextsthatarerelevantto spatialdisplayinstrumentswill advancespatialinstrumenttechnol-
ogyby enhancingourability to understand,predict,andcontrolthemany-to-onecorrespondence
thatoftenexistsbetweenstimulusinformation,perceptualimpressions,andperformance.
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IN

SUMMARY

My presentation at the conference was based on a paper that was prepared in advance and

submitted for publication in this volume. In addition, the presentation included several ideas that

emerged during the conference as a result of interactions with other participants. I would like to

convey those ideas here along with other thoughts that occurred to me later. I will organize this

commentary around three objectives: (1) to promote transfer of information across disciplines;

(2) to caution basic and applied researchers about the danger of assuming simple relationships
between stimulus information, perceptual impressions, and performance including pattern recogni-

tion and sensorimotor skills; and (3) to develop a theoretical and empirical foundation for predict-

ing those relationships.

INFORMATION TRANSFER ACROSS DISCIPLINES

This conference clearly indicated that basic and applied researchers have crossed traditional

boundaries to work together toward new applications of spatial display instruments. For example,

on the one hand, leaders in basic research on perception, such as Richard Gregory and Richard

Held, spoke about their current research concerning applications of spatial display instruments. On

the other hand, M. W. McGreevy, a leader in promoting the application of spatial display in space,

also promoted basic research on sensation and perception. Thus, in place of the bottlenecks of

which I spoke in my paper, I got an impression of open communication and a steady flow of
information. As a result, multidisciplinary research teams have exciting agendas for research on

general principles that have direct relevance to spatial display technology.

I also discovered tremendous interest in transferring information between those who are devel-

oping spatial display instruments to enhance normal sensory function or to extend it to remote-

control situations and those who are developing electronic aids for the blind. I discussed with

many participants of the present conference a study on the latter topic that was organized while I
was Study Director for the committee on Vision (COVIS) of the National Academy of Sciences.

That Committee has recently released a study on electronic aids for the blind that includes a

research agenda that is highly relevant to the research programs of many of those who participated
in the present conference. For example, the report calls for more research on the nature of infor-

mation that is picked up about surfaces, and we saw in the present conference that this issue is also

important in teleoperation of land vehicles (see McGovern, this volume). The COVIS report can

be ordered by calling (202) 334-2565. You might also want to request information on a recent
COVIS conference on visual displays.
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DANGERS OF ASSUMING SIMPLE RELATIONSHIPS BETWEEN
PERCEPTUAL IMPRESSIONS AND PERFORMANCE:

DON'T TRUST YOUR INTUITIONS

My paper reviewed evidence that relationships between stimulus information, perceptual

impressions, and performance is complex, variable, and currently unpredictable. It is tempting to

treat the evidence as quirks since that would make life so much easier for basic and applied
researchers. If these relationships were simple, constant, and predictable, consider how worry-

free one could be in making inferences about basic principles of perception from observations

about performance, or in making decisions about human factors of performance from data about

perceptual impressions. Several considerations add to the temptation to regard the evidence as
quirks. For one thing, much of it comes from exotic clinical or laboratory situations regarding

blind sight, subliminal priming of recognition, and paradoxical perceptions. Furthermore, our

intuitions tell us that our sensory-guided performance corresponds to our perceptions most of the
time.

With these considerations in mind, my presentation included a simple demonstration of discor-

dance between perceptual impressions and performance in an everyday situation. I placed a plastic

golf ball on a carry-out lid on an old McDonald's coffee cup and asked people to observe the ball
with one or two eyes. The ball and cup were placed on an edge of a table while observers stood

leaning over the cup and judged the apparent viewing distance between themselves and the ball. In
agreement with data reviewed by Stanley Roscoe (this volume), participants at the conference and

undergraduates tested at Texas A&M University saw the ball as being the same distance or slightly

farther away (an average of about 1 cm) with one eye in comparison to the apparent distance with

binocular viewing. The same observers were also asked to hit the ball off the cup by swinging a

ruler parallel to the cup surface at the level of the ball. Order of these tasks was counterbalanced

across subjects and the results were the same both groups. Almost all subjects swung well above
the ball (an average of about 3 cm). I call the results of this demonstration the Old McDonald

effect. The demonstration is easy to repeat. You may substitute a Coke can, or any other small

can, and a wadded piece of paper for the coffee cup and ball. You may also try to hit the paper

with your finger instead of a ruler, as long as you attempt to make one smooth, rapid swing

parallel to the surface of the stand. If you are among the many people who are surprised to see

themselves swing above the ball, you will be in a better position to appreciate the point of the

demonstration, which is that you cannot trust your intuitions about perceptual impressions and

performance, even in over-learned skills such as hitting objects with your hand in natural condi-

tions. This is the main take-home message that I tried to emphasize in my presentation.

This message is relevant to other projects that were presented at the conference. For example,

some simulators have displays that are so realistic that an observer gets an impression of actually
being at the scene that is displayed, and scientists are attempting to analyze the determinants of

telepresence (see Held, this volume). Held outlined a framework for analyzing determinants of the

compellingness of these impressions, including time lags in visuo-motor tasks. The distinction
between perceptual impressions and performance will be critical in this context if it turns out that

the factors influencing perceptual compellingness are different than those determining proficiency

of performance. Similarly, those who are studying stereopsis (e.g., Enright, this volume; Foley,

this volume; Schor, this volume; and Stevens, this volume) might find different factors affecting

impressions of depth and performance with 3D displays. Finally, efforts are being made to train

pilots to see relative vertical separations better in collision-avoidance situations (Sherry Chappell,
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personalcommunications,September1, 1987). Scientistsmightalsofind herethatfactorsinflu-
enceperceptualimpressionsandperformancedifferently.

My short-termgoalis to alertappliedandbasicresearchersaboutpotentialdiscrepancies
betweenthedeterminantsof perceptualimpressionsandperformancethatcouldaffecttheir
researchandinstrumentationdesigns.Fornow,scientistswill haveto watchtheir steponacase-
by-casebasissincetherearenoempiricallyfoundedprinciplesthatwouldenablegeneralpredic-
tions. Thelastsectionof thiscommentarywill turnto my long-termgoalof providingafounda-
tion for suchpredictions.

THEORETICAL AND EMPIRICAL FOUNDATIONS FOR PREDICTING
RELATIONSHIPS BETWEEN STIMULUS INFORMATION,

PERCEPTUAL IMPRESSIONS, AND PERFORMANCE

This volume contains three hypotheses that propose a framework within which to investigate

the many-to-one relationship that exists between stimulus information, perceptual impressions, and

performance: (1) the Perception Plus Transformation hypothesis (see Foley, this volume); (2) the

Dual Mode of Visual Representation hypothesis (see Bridgeman, this volume); and (3) the Eco-

logically Insulated Event Input Operations (EIEIO) hypothesis. Figure 1 illustrates all three. They

all begin with conversion of distal information, which is in the environment, into proximal
information, which is at the interface between the environment and the sensory system. According

to the Perception Plus Transformation hypothesis, proximal information is converted into abstract

symbolic representations that result in perceptions and sensory-guided performance. But
sometimes, according to this model, the representations are transformed before they influence

performance. According to the TWO Modes of Visual Representation hypothesis, the proximal
pattern is converted into two representations that are determined by separate neural pathways. One

of these representations mediates perceptions and verbal responses, the other mediates motor

responses. Finally, according to the EIEIO hypothesis, the proximal pattern is converted into

multiple abstract symbolic representations. One of these is formed by general input operations that

mediate perceptual impressions and some sensory-guided behaviors. The others are formed by

specialized input operations, EIEIOs, which mediate specific sensory-guided skills. The general
input operations are the most robust in that they are adapted to operate optimally over the entire

range of variability to which the system is exposed. This robustness is gained at the expense of

efficiency and accuracy in any given situation. For example, the processing efference-based and

light-based information in a well-lit, structured environment might be less efficient than the pro-

cessing of light-based information alone, but this strategy would protect an organism that is sud-
denly confronted with a situation in which the light-based information is reduced. In contrast,

EIEIOs develop to serve sensory-guided skills optimally in a specific context. These input mod-

ules are extremely powerful in that context, but are very vulnerable to failures outside that context.

I originally postulated the existence of EIEIOs to account for highly skilled sensorimotor per-

formance of athletes, pilots, and astronauts. I then realized that they might also apply to more

common, highly practiced skills such as grasping, catching, or hitting objects within arm's reach.

The ball and cup demonstration is consistent with this possibility. Accordingly, perceptual

impressions in that situation are mediated by general input operations that are relatively robust to
the elimination of binocular information because redundant monocular information is also pro-

cessed. In contrast, hitting responses in that situation are mediated by an EIEIO. The results sug-

gest that this particular input module is more dependent upon binocular information. This strategy
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might have provided the EIEIO with greater efficiency in one common situation, but sacrificed
robustness in other situations.

It is one thing to consider that a select few of our species, such as athletes and pilots, develop

specialized event input operations to service their extremely high level sensorimotor skills. It is

quite another to suggest that we all do it to control ordinary skills such as grasping, catching, and

hitting in our everyday lives. An implication of the latter possibility is that the domain of percep-

tion with respect to perceptual impressions, and the domain of perception with respect to sensory-

guided performance, might be more distinct than we had realized. Consequently, we might have to
modify our analytic approaches to these domains. Past analyses of the nature and determinants of

perceptual impressions have yielded fundamental principles such as the laws of organization. Do

these principles apply to the input operations that underlie sensory-guided performance? The pre-

sent considerations suggest that this question must be answered by empirical tests rather than by

assumptions. The uniqueness of the EIEIO hypothesis is in the heuristic implications for such
tests.

After my presentation I was asked to explain how the EIEIO hypothesis differs from other

modularity models. I will conclude by answering this question. A salient feature of the EIEIO

model is that it includes more than one abstract, symbolic representations of space, only one of

which corresponds to perceptual impressions. As illustrated in Fig. 1, other models include that

characteristic. Summary comments on this conference provided a historical context for considera-

tion of such models (see Stark, this volume). In light of these comments and my own attempts to

trace historical roots, I believe that the EIEIO model has not only a novel name, but also unique

heuristic merits that will become clearer when more data are collected. In checking out the five
premises that are outlined in my paper, I will be testing ideas for which there are no other tests that

I have been able to find. The unprecedented experiments will focus on ways in which practice of a

sensory-guided skill can reconfigure the way in which input operations utilize proximal

information. Two types of experiments are suggested: one that analyzes existing skills, as was

done in the ball and cup demonstration, and one that examines the learning of new sensory-guided

skills. The focal questions concern the constants and variables of adaptive input operations that
underlie relationships between stimulus information, perceptual impression, and performance. The

processes underlying the laws of organization might be examples of processes that are universal

and constant across all input operations. But, as noted earlier, the EIEIO hypothesis indicates that
such possibilities must be tested rather than assumed.

Given the limited scope of this commentary, I can only paint in broad strokes the kind of tests

that are suggested to me by the EIEIO heuristic. The tests that I am planning were greatly influ-

enced by work summarized by Marr (1982). He provided detailed models of lower visual pro-
cesses at three levels of explanation: (1) computation, (2) representation and algorithm, and

(3) hardware (neural) implementation. In contrast, models of higher processes were limited to the

computational level and were much less developed. A sharp decline in detail occurred in modeling

the transition from a viewer-centered frame of reference (two and one-half-dimensional sketch) to a

three-dimensional frame of reference based on the shape itself. Marr stated that an obstacle to more

detailed modeling of these higher processes is the difficulty of discovering "what systems and

schemes are actually used by humans...at present I see no empirical way of approaching this type

of problem. It seems to be much more difficult to design experiments to answer questions at these

rather high levels of analysis than at the lower ones...Designing a successful empirical approach to

such questions would represent a major breakthrough." Experiments that gave major insights into

lower-input operations were often based on dramatic perceptual impressions, such as those created

by Julesz's random dot stereograms or by Ullman's rotating cylinder demonstrations. Higher
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operations,suchasthosethatunderlieobjectrecognitionand/orlocalization,aremuchmorediffi-
cult to capturewith suchdemonstrationbecauseof thevariableandcomplexrelationshipsthatexist
betweenstimulusinformation,perceptualimpressions,andperformance.

In orderto accountfor thesemany-to-onerelationships,Marr proposeda modelthatbears
directly uponthepresentconsiderations.Hesuggestedthatasingle,two andone-half-dimensional
sketchis constructedin orderto serveall sensory-guidedsystems,andthatdifferent systemspro-
cessthis abstract,symbolicrepresentationaccordingto differentrulesto suitdifferentpurposes.
Sincethedataemployedin testingthenatureanddeterminantsof thetwo andone-half-dimensional
sketchwerebasedonperceptualimpressions,Marr'smodelcanbeinterpretedasaPerceptionPlus
Transformationmodel.

TheEIEIO is similar in suggestingdistinctinputmodulesfor differentpurposes,but theEIEIO
modeldoesnotassumecommonoperationsfor all modulesup to thelevelof atwo andone-half-
dimensionalsketch,or up to anyotherabstractrepresentation.Instead,theEIEIO modelleaves
openfor testingthepossibilitythatseparateinputmodelsalreadydivergeat theinitial samplingof
theproximalpattern,which is definedatthe interfacebetweenphysicalinformationandsensory
receptorsbeforeabstractionprocessesbegin.

Thiscontrastbetweenmodelssuggestsa startingpointfor testing. My planis to usedisplays
similar to thosethathavecastlight onprocessesthatyield atwoandone-half-dimensionalsketch.
Onesuchdisplayis Ullman'scounterrollingcylinders,whichconsistsof a sequentialpresentation
of asetof frames. Eachframeis arandomsetof dots,andthatis howeachframeappearswhenit
is presentedalone. Therelationshipbetweenframes,however,ishighly structuredsuchthatthe
framespresenta screencontainingsuccessiveorthographicprojectionsof two concentriccylinders
thatarecounterrotating.Whentheframesarepresentedattheappropriaterate,observerssee
counterrotatingcylinders. ThisperceptualimpressionwasUllman'smainresponsemeasure.I
will modify thedisplayin orderto manipulatemonocularversusbinocularviewing, stereopsis,
texturegradients,brightnessgradients,andotherinformationaboutthescreen'sorientationand
distance.I will alsoaddbothverbalandmotorresponseaswell asmoretaskdemandsand
responsemeasures,suchasmoredetailedreportsof perceptualimpressionsasmeasuredby
EpsteinandPark(1986),measurementsof forced-choicerecognition,measurementsof viewer-
centeredsurfaceorientationanddistanceby meansof alignmentof anunseenbodypartwith the
surface,measurementsof object-centeredsurfaceorientationby meansof comparisonwith astan-
dardobject,andmeasurementsof accommodationandconvergence.An initial stepwill beto
replicatetheOldMcDonaldeffectin thiscontextandto pursueotherdiscrepanciesbetweenper-
ceptualimpressionsandperformance,includingrecognitionandvisuomotorcoordination.In
addition,I will try to createsuchdiscrepanciesby selectivelymanipulatingsourcesof information
during trainingsessionondifferenttasks.

An importantphasewill be testingopposingpredictionsof PerceptionPlusTransformation
modelsandtheEIEIO model. Forexample,controloverseparatesourcesof informationwill
enableprecisemanipulationsof thedegreeof veridicalityof perceptualimpressions.Perception
PlusTransformationmodelswill besupportedwheneverrecognitionor localizationresponsesare
relatedtoperceptualimpressionsby atransformationrule;theEIEIOhypothesiswill besupported
wheneversensory-guidedperformanceandperceptualimpressionsvary independently.Finally,
theTwo Modesof VisualRepresentationhypothesiswill betestedby comparingverbalandmotor
responses.
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Theproposedempiricalapproachthatwassuggestedby theEIEIO heuristicis ahybridof
methodstraditionallyusedto measureperceptualimpressionssuchastheconstancies,andmethods
thathavebeenusedto analyzecognitiveprocessessuchasstagesof processingin patternrecogni-
tion. Theapproachis aimedattwo goals; (1) to provideadatabasefor inferringthesystemsand
schemesthatdetermineperceptualimpressionsandsensory-guidedperformance;and(2) to
advancespatialinstrumenttechnologyby enhancingourability tounderstand,predict,andcontrol
themany-to-onecorrespondencethatoftenexistsbetweenstimulusinformation,perceptual
impressions,andperformance.
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PILOT

At least three elements influence the performance of an operator who must make a system

achieve a desired goal: (1) the dynamics of the system itself, (2) the nature of the possible inputs,

and (3) the means whereby the operator views the information concerning the desired and actual

state of the system (e.g., Poulton, 1974; Wickens, 1984; and Wickens, 1987). In conventional

airplanes manual control involves the coordination of "inner loop" controls. In this task the pilot is

responsible for continuous manipulation of the controls to compensate for disturbances. Primary

displays (fig. 1) provide the several essential flight parameters which the pilot is required to moni-

tor, interpret, transform, and integrate.

It has long been recognized that intense concentration is necessary for a pilot to achieve high

tracking performance using only "raw data." The underlying need for such concentration stems

from the effort necessary to obtain timely error, error rate, and control input information in each of

the three flight axes. Precision instrument approaches often have higher minimums if a suitable

flight director or autopilot is not available and in use. Most pilots have come to depend on these
aids. Some pilots express doubt about the precision of their own tracking ability any time they are
unavailable.

Flight directors, which came into widespread airline use in the 1960s, aid the pilot in achiev-
ing improved performance by combining the error and error rate information; producing a control

command appropriate to the situation. This command is then compared with the existing control

input and the difference displayed as a steering command. The generation of the steering command

entails automation of several logical and mathematical operations. Of course the pilot must set up

the proper task for the flight director to perform and must follow the steering commands. In typi-
cal applications the automation is sufficiently complete that the pilot has no required intermediate

data-interpretation role beyond that of recognizing and following the steering command.

While use of the flight director improves performance in precision tasks, it does not signifi-

cantly reduce the continuous attention demands imposed on the pilot. Use of a path-following

autopilot mode automates the process one step further by coupling the steering command to the

control surfaces. Relieved of the continuous steering requirement, the pilot is able to devote more
time to other tasks.

Both flight directors and autopilots achieve impressive performance gains. A side effect of

these gains is a reduction in the necessity for the pilot to maintain a high level of awareness of the

elements pertinent to the control task; namely the path error, error rate, and control input. To be

sure, all modem aircraft present these parameters and most airline operating procedures dictate that

the pilot monitor them while using either the flight director or autopilot. However, the monitoring

task is fundamentally different from that of developing a control input given only "raw" data. In

particular, the dynamic decision-making demands of the monitoring task are much lower than those
of the control task.
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Spatialdisplays,togetherwithenhancedmanualcontrol,offer anopportunityto achievethe
samehighperformanceachievedwithautopilotsandflight directorswhile improvingthepilot's
overallsituationalawareness,particularlyduringflight tasksotherthanfinal approach.This is
accomplishedbyrevisingthesplitof responsibilitiesbetweenthepilot andtheaircraftautomation.

In transport operations, the need to alter the velocity (flightpath angle, track angle, or speed)

is much less frequent than the need to compensate for wind effects, turbulence, configuration

changes, and speed changes. In terminal area operations, the number of required velocity changes

may be an order of magnitude or more lower than those attitude changes necessary to maintain a

velocity. Furthermore, the needed velocity changes are typically separated by many seconds. By

assigning the velocity-hold task to the basic flight-control system, the majority of the attitude

adjustments can be made transparent to the pilot. This type of control frees the pilot from the con-
tinuous attention requirement of attitude steering while maintaining the pilot's direct involvement in

airplane guidance.

Spatial displays make it possible for the pilot to be directly involved in developing the path

error information and in selecting the specific tactic to be employed in correcting the error. To

make this practical, current position and velocity information must be displayed in a consistent

context. Operational displays based on work done at Boeing, NASA Langley, RAE-Weybridge,
and other places have shown that a map display, with track angle and speed shown by means of

predicted future positions, provides a suitable context.

The first generation of commercial airline spatial displays are in operation on the Boeing 757

and 767 and the Airbus A-310. These displays take the form of CRT maps with various types of

integral predictors (fig. 2). The format consistency of these displays is quite high and pilot accep-

tance has been exceptionally good. The CRT maps are used for planning and assessing all types of

lateral maneuvers. Direct manual aircraft control is still accomplished by reference to a separate

attitude instrument, but virtually all of the decisions to maneuver laterally can be made looking at

information contained in the map display.

The success of the map display and the potential for flightpath angle and track angle control

to be used on the next generation of commercial aircraft encouraged us to consider expanding the

role of spatial displays. Data from the NASA Aviation Safety Reporting System identifies altitude-

related errors as the single largest category of reported problems (Reynard, Ames Research Center,

1987, personal communication). While the immediate causes of the reported errors are quite

varied, we see a common thread emerging. The pilot's awareness of the vertical flight situation in
most instances does not match the reality of the flight plan, the ATC clearance, or the equipment

setup. A spatial display should be an ideal means of improving the pilot's vertical situation aware-

ness (Baty, 1976).

For most transport flight operations except takeoff and landing, the tracking accuracy

required of the pilot is at least an order of magnitude higher for the vertical task than for the lateral

task. Typical tracking-performance goals as perceived by the pilot away from final approach are
+50 ft of altitude and _+0.5 ° of a VOR radial. At 40 n. mi. from the VOR station, _+0.5 ° corre-

sponds to over +_2000 ft. At this point the accuracy ratio is 40:1. Even on final approach the

vertical accuracy requirements exceed the lateral by at least 2:1. If a conformal 3-D display were

used with sufficient resolution to satisfy the vertical task, the pilot would be overworked laterally.

This concern, along with the difficulty of presenting future trend information in a forward-looking
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display,leadusto concentrateonaseparate2-D side-viewdisplayfor themajorityof vertical
situationinformation (Grunwald,1980;andFilarsky,1983).

Somepastaircraftprogramshavereferredto theattitudedisplayasaverticalsituationdis-
play. We preferto usethemoreconventionalterminology,ADI (attitudedirectorindicator)or PFD
(primaryflight display)for theforward-lookingdisplayof attitudeinformationandotherfunda-
mentalflight data.We referto aside-lookingorprofiledisplayasavertical-situationdisplayand
expectthatthepilot wouldobtainthemajorityof overallverticalsituationawarenessfrom thisdis-
play (fig. 3).

Overthepast2yr wehavebeenexploringwaysof developingausefulandeffectivemeans
to portrayvertical-situationinformation.Thereareanumberof practicalproblemswhichnarrow
thepossibleformatoptionsfor verticalflight information. Theremainderof thispaperwill outline
thelargerhurdlesandindicatewhatprogresshasbeenmadein solvingthem.

Threeissuesappearto befundamentalto thedevelopmentof a successful vertical situation

display:

1. Handling of the large difference in resolution requirements between the longitudinal and

vertical flight tasks.

2. Determination of the appropriate level of control information to be contained in the
instrument.

3. Selection of a display context which will be intuitive to the pilot and provide useful assis-

tance for on- and off-path vertical maneuvering.

SCALING ISSUES

The disparity which exists between vertical and lateral resolution requirements applies as well
to vertical and longitudinal information. In fact, since time constraints are seldom tighter than a

minute or more, the difference in resolution requirements can be well in excess of two orders of

magnitude. With this large a difference, equal vertical and horizontal display scaling is clearly

impractical. By using a flightpath predictor we have been able to achieve a balance between verti-

cal tracking performance and the desired path preview capability.

Initial test results indicate that when the vertical situation is presented spatially, a steady

increase in mean deviation from an optimal descent occurs as scale resolution is decreased (fig. 4).
However, even the largest deviation is significantly less than the lowest mean without the spatial

graphics. This result could be attributed to the difference in the tactics the subject pilots employed

to accomplish the task under the two presentations. Without the graphics the pilots had to mentally

integrate various analog quantities according to their own individual rules of thumb. As can be

seen in figure 5, this results in an overall greater deviation from the optimal descent strategy and

more variance among the individual pilot deviations. When given a spatial presentation of the situ-

ation, the subject pilots employed similar path-following tactics, resulting in greater tracking preci-
sion and a lower-rated workload level.
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Thefactof unequalscalescausestheanglerepresentationson thedisplayto beexaggerated
vertically. Throughapreliminarytestserieswefoundthatscaledifferencesof asmuchas20:1do
nothaveanegativeinfluenceon typicalairlineflying tasks.Obviouslyaircraftwith significantly
greaterclimb or descent capabilities than transports would encounter difficulty at lower-scale
ratios. What appears more important to the pilots is that the longitudinal scaling of the side-view

display and the map display be congruent so that the rate of movement between the two is

compatible.

Another result from our initial investigations reveals that a digital readout of altitude takes on

added importance as scale resolution is decreased (fig. 6). In seeking the proper balance between

scale resolution for precision and scale range for preview, it was shown that a digital readout of

altitude provides a good vernier indication while the graphics provides the necessary "big picture"

overview. The graphic spatial information is effective in drawing the pilot's attention to the digital

readout when precise control is needed.

CONTROL ISSUES

In all of today's transport aircraft, manual control is exercised using the attitude display with

follow-up reference to the situational displays. This is the case for map-display-equipped aircraft

as well. Laterally the track angle is two integrations removed from aircraft roll rate, over which the

pilot has direct control. The resulting time delay between control input and map response is too

long for track angle to provide primary inner-loop feedback to the pilot. Even when lateral
acceleration is used to create a prediction of the dynamic path which will be flown, the pilot's pri-

mary control feedback comes from the bank indication on the attitude indicator.

Vertically the conventional control parameter is pitch rate. This term is separated from flight-

path angle by a single integration and some higher-order dynamics. For transports this places the

flightpath response on the order of 1-2 sec behind the control input; long enough to be useless as

the primary feedback term for most situations and short enough to interact negatively with pitch

feedback. The primary dynamic term in the vertical situation is flightpath angle. Furthermore,

flightpath angle, rather than pitch attitude, can be readily assessed in terms of the geometry or

energy conditions of the vertical situation. If the response dynamics of flightpath angle were not
so close to that of pitch attitude, the separation of control and situation assessment, which works

very well in the lateral case, could be established for the vertical case as well.

Beginning with experimental work on the Boeing SST in the late 1960s and continuing

through the early phases of the NASA TCV program, we became convinced that if flightpath

angle, along with suitable situational reference information, is available to the flight crew, the crew

will attempt to use it for control. Without good matching of the control and display dynamics, pilot

workload may well increase.

If a flightpath-angle command-control system is in use, it is possible to display the flightpath

which will be held. This term can be made as responsive as necessary to support the pilot's need

for timely information. If a more conventional control system is used, a filter with appropriate lead

compensation can be added to quicken the dynamics of the flightpath angle information (Bray,

1981).
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Thekeysituationalelementwhichmakescontrolpossibleis theflightpathpredictionbased
on flightpathangle. Removethepredictionandcontrolrevertstoconventionaltechniques.How-
ever,withouttheprediction,theusefulnessof thedisplayfor enhancingcurrentsituationalaware-
nessisdramaticallyreduced.Evenmaintainingaconstantaltitudeisdifficult withoutthepredic-
tion. Thusthequestionaboutthedesiredlevelof controlinformationis not anindependentissue.
If thedisplayis to beuseful,it mustcontaindynamicflightpathinformation. Thepresenceof such
informationmeansthatthedisplaywill beusedfor control. Therealissue,then,is how to match
thecontrolanddisplaydynamicsto theinformation-processingcapabilitiesof thepilot.

DISPLAY CONTEXT

The third fundamental issue has to do with matching the frame of reference of the display to

that of the pilot. The vertical component is straightforward. However, the options for the hori-

zontal component are more complex. If information concerning the planned route of flight were

always available and current, then distance along the route would be a good choice. However, the

planned route is not always available. Furthermore, one of the more important uses of the display

is during operations when the airplane is intentionally away from the planned path.

For these situations a narrow slice ahead of the airplane would be more useful. In either case

close coordination between the vertical and horizontal situation displays is essential.

Development work aimed at clarifying the format orientation issue is now under way. We
expect to have an understanding of the major tradeoffs late this year.

CONCLUSIONS

Our experience raises a number of concerns for future spatial-display developers. While the

promise of spatial displays is great, the cost of their development will be correspondingly large.

The cost goes well beyond time and materials. The knowledge and skills which must be coordi-
nated to ensure successful results is unprecedented. From the viewpoint of the designer, basic

knowledge of how human beings perceive and process complex displays appears fragmented and

largely unquantified. Methodologies for display development require prototyping and testing with

subject pilots for even small changes. Useful characterizations of the range of differences between
individual users is nonexistent or at best poorly understood. The nature, significance, and fre-

quency of interpretation errors associated with complex integrated displays is unexplored and

undocumented territory.

Graphic displays have intuitive appeal and can achieve face validity much more readily than

earlier symbolic displays. The risk of misleading the pilot is correspondingly greater. Thus while

we in the research community are developing the tools and techniques necessary for effective
spatial-display development, we must educate potential users about the issues so they can make

informed choices. The scope of the task facing all of us is great. The task is challenging and the

potential for meaningful contributions at all levels is high indeed.
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SUMMARY

To carry out unanticipated operations with resources already in space is part of the rationale for

a permanently manned space station in Earth orbit. The astronauts aboard a space station will

require an on-board, spatial display tool to assist the planning and rehearsal of upcoming opera-

tions. Such a tool can also help astronauts to monitor and control such operations as they occur,

especially in cases where first-hand visibility is not possible. This paper describes a computer

graphics "visualization system" designed for such an application and currently implemented as part

of a ground-based simulation. The visualization system presents to the user the spatial information

available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth,

the Sun, a star field, and up to two spacecraft. The point of view within the picture can be con-

trolled by the user to obtain a number of specific visualization functions. The paper describes the

elements of the display, the methods used to control the display's point of view, and some of the

ways in which the system can be used.

INTRODUCTION

This paper describes a computer graphics display system designed to facilitate the visualization
of spacecraft operations in Earth orbit.

The system was originally developed as a component of the Space Station Simulator project at

the Charles Stark Draper Laboratory. The purpose of this simulator is to assess the flying qualities

of space station configurations, and to provide a software framework within which to develop

control-system concepts applicable to space stations. Computer graphics were added to the simu-

lator to provide qualitative information about the progress of the simulation, and to allow for a
man-in-the-loop capability. As time went on it became evident that the displays required by engi-

neers working on the ground might also be valuable to astronauts working aboard a space station.

To be able to carry out unanticipated tasks with resources already in Earth orbit is part of the

purpose of a permanently manned space station. Operations will be required which cannot be

rehearsed by the astronauts using ground-based simulators because the need for them arose after

the crew was launched into space. On-board capabilities must exist to allow the crew to plan such
orbital operations and to train themselves to execute them. In addition, the space station crew must

perform a sort of air-traffic-control function in keeping track of other spacecraft operating nearby,

and must control not only the space station itself and its movable appendages, but also free-flying

spacecraft associated with the space station, including spacewalking astronauts.
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Thedisplaydescribedin thispaper,if attachedto suitablemissionandsimulationsoftware
aboarda spacestation,cansupportboththeon-boardsimulationcapabilityandthereal-timemon-
itoringof operations.I shallspeakof thevisualizationsystemasanon-boarddisplayinstrument,
with theunderstandingthatits capabilitiesarosefrom,andarealsoapplicableto,ground-based
engineeringsimulationpurposes.

Thedisplayis calleda "visualizationsystem"becauseit is asystemdesignedto aidtheuserin
visualizingathree-dimensionalsituationin space.In theterminologyestablishedfor thisconfer-
ence,thevisualizationsystemfits in somewherebetweena "spatialdisplay"anda "spatialinstru-
ment." Like aspatialdisplay,thesystempresentstheuserwith anunembellished,undistorted
imageof aspatialsituation.Like a spatialinstrument,thesystemrequiresadegreeof interaction
with theuser,who mustcontrol thepoint of view from whichtheimageis drawn. Perhapsthe
bestdescriptionof thevisualizationsystemis asaspatialinstrumentwhichcanpresentavarietyof
spatialdisplaysunderthecontrolof theuser.

Theexistingimplementationusesdisplayequipmentthatproduces"wire-frame"objectswhose
"hidden"partsarevisible. Althoughin somecaseswire framesmayremainpreferable,actualuse
aboardaspacestationwill requireflight-qualifieddisplayhardwarecapableof renderingsolid
objectswith shadingandshadowing.

I shalldescribetheelementsof thescenecreatedby thevisualizationsystem,discussthemeans
by whichthepointof view within thesceneis controlled,andfinally describesomeof thespecific
waysin whichthesystemcanbeused.A moredetaileddescriptionof thevisualizationsystemis
availablein reference1. A shortpublisheddescriptionwithcolorillustrationsisavailablein
reference2.

ELEMENTS

The principal elements of the display created by the visualization system are the planet Earth,

the Sun, a field of stars, and one or two spacecraft. The planet Earth is drawn as a sphere made up
of latitude and longitude grid lines and a map showing the outlines of major land masses and prin-

cipal cities. Other Earth-fbxed features such as circles indicating coverage from tracking sites can
be added. The Earth is drawn from data expressed in a geodetic or Earth-fixed coordinate frame;

that is, a frame of reference which moves with the Earth. The Sun is drawn, not to scale, as a

yellow asterisk with 24 points. A star field of 123 stars is also drawn, and is valuable for two rea-

sons. First, showing the stars in their correct astronomical positions provides a realistic star back-

ground for maneuvers being monitored or simulated, and allows maneuvers to be planned which

may be dependent on the availability of specific navigational stars. Second, stars provide a motion
cue when the point of view is rotating with respect to inertial space.

The visualization system also contains, in the present implementation, up to two spacecraft.
One is often the space station. Each spacecraft may consist of a core and one or two movable

appendages such as solar panels. For a spacecraft with thrusters, an exhaust plume is drawn when

a jet is fired. Because the space station is not yet fully defined, and because other spacecraft may

need to be represented, the visualization system allows spacecraft to be defined as an assemblage
of simple cylindrical and plate elements. The visualization system also contains information such

that a cylinder which is meant to represent an established type of module, for example a habitat
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module, can be given detail to make its appearance more realistic. In the case of an unusual or

unknown spacecraft, simple cylinders and rectangular plates can be used to build up an image.

Additional minor elements of the visualization system include a gnomon, always drawn in the

upper left comer of the square window occupied by the display, which indicates the orientation of
the local-vertical, local-horizontal (LVLH), frame of reference pertaining to the principal space-

craft. The visualization system also has the capability of drawing a buoy, a yellow three-dimen-

sional cross, which may be used to represent present a spacecraft of unknown configuration, or to

mark a spot in space, as, for example, a nominal position to be returned to after a maneuver. There

are some other minor embellishments which apply to specific ways in which the visualization sys-

tem can be used, and these are discussed later.

Information Requirements

The Sun, stars, Earth, and spacecraft together form a sort of computerized orrery. The system

is set into motion by computed transformations and positions which are used to locate each element

in its proper relative position, either for the present time (for monitoring), or for some future time
(for simulation). Besides initialization information specifying the configurations of the spacecraft

that are to be drawn, the visualization system requires the following dynamic information from the
simulation or mission software to which it is attached:

• Position of spacecraft center of mass.

• Position of spacecraft center of mass with respect to spacecraft structure.

• Position of spacecraft appendages.

* Attitude (orientation) of spacecraft.

• Jet firing information for spacecraft.

• Sun position.

• Transformation relating the Earth-fixed coordinate system to a reference inertial coordinate

system.

• Transformation relating the spacecraft LVLH coordinate system, a frame which moves with

the spacecraft and is defined in terms of its position and velocity, but not its attitude, to the

reference system.

• Transformation relating the spacecraft "body" coordinate system, which is fixed with

respect to the spacecraft's structure, to the LVLH frame.

New values for each quantity are required for each frame drawn by the visualization system.

For a given time, the relationships defined by this information form a scene which is represen-

tative of a real situation and not under the control of the user of the system. The point of view
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within the scene, however, can be controlled by the user to accomplish various specific visualiza-

tion functions.

Control By the User

The point-of-view characteristics which are under the control of the user are the following:

• The coordinate system with respect to which the point of view will be def'med.

• The origin, i.e., the object or point which is to occupy the center of the picture.

• The distance from the eye to the chosen origin.

• The line-of-sight vector, expressed in the chosen coordinate system, from the eye to the

chosen origin.

• The angular field of view of the image presented.

In the present implementation all characteristics are dynamically under the control of the users
as they use the display, with the exception of field of view, which is defined at initialization time.

The user-controllable characteristics are input by means of an alphanumeric display and keystroke

language based on the method used in the space shuttle. An analog dial and joystick may also be

used in controlling point-of-view distance and direction. Although normally each characteristic is
explicitly controlled, canned combinations can be provided so that certain favorite set-ups can be

obtained with a minimum of keystrokes. Figure 1 shows the alphanumeric display page used to

control the visualization system point of view.

The point of view coordinate system may be chosen from among the usual frames of references

used in space applications. These include an inertial frame locked to the stars; an Earth-fixed frame

which moves with the planet Earth; the LVLH frame which moves with the spacecraft, but is inde-
pendent of its orientation; and a "body" frame which is locked to the spacecraft structure. When

more than one spacecraft is included, the LVLH and body frames pertaining to each are available,

although of course when the spacecraft are near each other their LVLH systems are not signifi-

cantly different. All frames except the reference inertial are rotating coordinate systems. Addi-

tional coordinate systems can easily be added to the structure.

A second aspect of the point of view which is under the control of the user is the point upon

which the display is centered. An early lesson in the design of the visualization system was that

when the point of view is allowed to maneuver independently, it was easy to lose track of the

object of interest. As a result, the point of view is normally centered on some chosen point. The

choice of "origin" consists of the center of the Earth, the centers of mass, body coordinate system

origin, or the crew station of either spacecraft, and the midpoint between the centers of mass of
two spacecraft.

Having chosen an origin and a coordination system, the user must choose a line-of-sight vec-

tor. The line of sight is controlled by numerically specifying a unit vector expressed in terms of the

chosen coordinate system, or by manipulating a joystick which is attached to the system. The line-

of-sight distance, the distance between the "eye" and the chosen origin, may be controlled
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numericallyor bymeansof ananalogdial. Distancesbetweenzeroand500,000km (continuous)
arepermittedin thepresentimplementation.A negativedistancemaybespecified,but theuseful-
nessis limited becausethatputsthechosenoriginbehindtheeye.

Thepointof view maybethoughtof aslookinginwardfrom a spotona sphere.Thesphereis
stationarywith respectto thechosencoordinatesystem,it iscenteredonthechosenorigin, andits
radiusis thechosendistance.Thepoint of view'spositiononthesphereis specifiedby theline-
of-sightvector.

Theangularfield-of-viewof thedisplayis alsounderthecontrolof the user, although in the

present implementation in the space station simulator, the field of view must be chosen ahead of

time and is not subject to real-time modification. Fields of view between 10 ° and 90 ° are allowed.
The most usual choice is 40 ° . While this angle does not correspond to the actual angle subtended

by the display window when looked at from the usual viewing distance, it does roughly corre-

spond to the field of view of the normal photograph taken with a medium length lens, and is satis-

factory to most users.

Ways of Using the Visualization System

The visualization system is a general system which can present the scene resulting from any
combination of the available coordinate systems, origins, and lines of sight. The following are

some of the specific ways in which the system can be utilized:

Chase plane views- The view that would be available from an imaginary chase plane flying

alongside can be obtained by choosing the LVLH framework, an origin centered on the spacecraft

of interest (or midway between two spacecraft of interest), and a line of sight and distance such as
to achieve the desired view, whether from ahead, the side, behind, above, or below. Such a point

of view can be useful when visualizing docking and berthing operations in which two spacecraft

come together or separate. It can also be useful simply by presenting an "out of spacecraft" view

of a single spacecraft, such that the spacecraft's location relative to the Earth in the background, its

orientation, and the position of its movable appendages are simultaneously apparent. Figure 1
shows a chase plane view in which an OMV approaches a satellite to pick it up.

Pilot's-eye views- By selecting the body coordinate system of a given spacecraft, setting origin
to "crew station," and choosing a distance of zero, the point of view can be placed in the driver's

seat of any spacecraft, even an unmanned one for which an imaginary crew position is defined.
Such views can serve a number of purposes, such as assessing what will be seen from the crew

station window during a planned maneuver (including star availability and the problem of solar

glare), presenting views that are not available in real life because there is no suitable window, and

providing an on-board perspective for unmanned spacecraft which may be remotely controlled

from the space station. If coupled to suitable simulation software, this point of view also allows
the rehearsal of operations to be conducted by an astronaut using a Manned Maneuvering Unit,

such as satellite capture. Figure 2 presents the view from a point behind the space station hatch to
which the shuttle will dock. Such a view represents a "synthetic window" providing visibility in a

case where spacecraft structure may preclude an actual window. (An illustration of the fact that the

visualization system includes special cases equivalent to existing instruments is the fact that a

pilot's eye view looking forward, perhaps with the horizon in view, corresponds to the stylized

pattern presented by the attitudes reference insmament known as the 8-ball or artificial horizon.)
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Whol¢-Ear_h vi¢w_- The visualization system permits point-of-view distances large enough

that the entire Earth is visible. Because at such distances the spacecraft appear as points of light, a

capability called "rescale" is available which vastly expands each spacecraft (and shrinks the
Earth), to produce a not-to-scale cartoon view in which both the position and orientation of the

spacecraft are apparent. Such a point of view is useful for following a rendezvous operation in

which the spacecraft may start out on opposite sides of the planet. For example, a whole-Earth

view looking along the Y axis in LVLH coordinates shows the view normal to the orbital plane.

Z-axis views in the Earth-fixed or inertial framework show the Earth from its polar axis. In the

inertial case the Earth will be seen to rotate during 24 hr. Figure 3 shows a scene in which two

spacecraft are viewed from a polar axis point of view.

I_Qlating a factor- Another way of using the visualization system allows the effect on a space-

craft of some single factor to be isolated. Such a capability might come into play when a new con-

trol system is to be tested on-board before being given control of the space station. The spacecraft

is drawn twice at the same location and time. One image represents the spacecraft as it actually

appears in real time, the other represents a simulated version of the same spacecraft as if it were

controlled by the new control system under test. Divergences between the two images will illus-

trate performance differences attributable to the new system.

Roam capability- In most cases it is desirable to center the point of view on the object of great-
est interest. The "roam" capability can be selected to remove that constraint and allow the point of

view to maneuver independently within the framework established by selected coordinate system

and origin. During a roam, the point-of-view orientation is controlled by a joystick and a dial can

be used to creep forward or backward. When the joystick is deflected a reticle is drawn at the cen-

ter of the screen to facilitate pointing at the object of interest. The reticle disappears several sec-
onds after the joystick is released to afford an unobstructed view. The roam capability can be used

to mimic a spacewalk, or EVA, by roaming within the spacecraft body coordinate frame.

(However, control is geometric, and the orbital dynamics of an EVA are not simulated in this

case.) The roam capability may be most important for inspecting the spacecraft's structure (as

known to the computers) but, for example, the view from Boston or Los Angeles could be
obtained by letting the point of view roam within the Earth-fixed frame.

The visualization system is not limited to the capabilities described. It can present any view

that can be specified using the point-of-view variables under the control of the user. This can

include points of view that are probably nonsensical. An example would be an Earth-centered

view in the spacecraft body coordinate system. If the spacecraft is spun, the planet appears to

gyrate in such a way that the spacecraft is kept in the same orientation.

CONCLUSION

The central strategies employed in designing the visualization system were, first, to use a pic-
ture to make available to the user the extensive information available in the space station's computer

system; and second, rather than design a number of special-purpose instruments, to create a gen-

eral display from which specific capabilities can be obtained by controlling the point of view in

various ways.

36-6



It may be useful, in conclusion, to contrast the visualization system to concepts such as the
"virtual cockpit" designed to assist the pilots of high-performance aircraft. While the virtual cock-

pit enhances the pilot's perceptual effectiveness, the "visualization system" enhances the crew's

operational effectiveness.

The distinction follows from the dissimilar missions. The mission for which the virtual cockpit

is designed may last only the few seconds it takes for a jet aircraft to carry out an attack. The

pilot's success and survival depend on efficiency during this period. The virtual cockpit takes a

single point of view and enhances its perceptions by introducing labels, speed posts, threat indica-
tors the terrain itself, and so forth. The attack pilots might appreciate a view of themselves as seen

by the target, but the exigencies of the combat situation require instead that they stay within
themselves.

The visualization system is also designed to enhance the pilot's effectiveness, but in this case

the mission may last months and, despite the high absolute velocities, the relative speeds are often

closer to sailboats than to jets. On the other hand, space is a place with no up or down, or rather a

variety of ups and downs, depending on the particular situation. The visualization system

responds by providing a tool that is suitable for the on-board planning and rehearsing that will be

part of a long mission, and which offers a way of visualizing operations as they appear in several

shifting frames of reference.

Aboard a space station, the pilot is sitting at a console which may face in an arbitrary direction

and may be without a window. Split-second reactions are seldom necessary. There are no

weather problems. What is necessary is the ability to plan and then to monitor spatial operations

which may be hard to see and hard to visualize. For this case, the ability to assume a God's-eye

view and follow the orbits leading to rendezvous, to fly alongside in a phantom chase plane, to

take the vantage point of an imaginary window in your own spacecraft, or the viewpoint of

another, perhaps unmanned satellite, may prove to be useful.
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Figure 1.- The complete space station simulator display. The visualization system forms the

square window at upper center. The alphanumeric display page used to control the point of
view is at upper right, simulation data are displayed at upper left, and special-purpose displays

such as an orbit position indicator (OPI) and an attitude director indicator (ADI) are below.

The visualization system shows an orbital maneuvering vehicle (OMV) nearing a satellite which

it wishes to grapple, as it would be seen from an imaginary "chase-plane" flying beside them.

36-8



ORIGINAL G,k_: _'S

OF POOR QUALITY

\

I

I

I

\

Figure 2.- In this view the point of view has been locked to the body coordinate system of the

space station and located just inside the shuttle docking hatch, looking in a forward direction.

At a distance of approximately 150 m a space shuttle fLres maneuvering jets to reach an attitude

for docking. Such a point of view can be used to assess window visibility for upcoming oper-
ations, or, as in this case, to provide a synthetic window where none exists.
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Figure 3.- In this view the point of view has been located 30,000 mi from the center of the Earth

and directly above the north pole. Two spacecraft are shown, the dual-keel space station and a

space shuttle. The RESCALE option has been selected and therefore the spacecraft sizes are

exaggerated. Such a point of view allows the positions and attitudes of multiple spacecraft to

be simultaneously visualized, as might be desirable during a rendezvous maneuver.
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ABSTRACT

An interactive, graphical proximity operations planning system has been developed which
allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft
environment about the space station. Maneuvering takes place in, as well as out of, the orbital

plane. The difficulty in planning such missions results from the unusual and counterintuitive char-

acter of relative orbital motion trajectories and complex operational constraints, which are both

time-varying and highly dependent on the mission scenario. This difficulty is greatly overcome by
visualizing the relative trajectories and the relevant constraints in an easily interpretable, graphical

format, which provides the operator with immediate feedback on design actions. The display

shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the

background of the station's orbital plane. The operator has control over two modes of operation:
(1) a viewing system mode, which enables him or her to "explore" the spatial situation about the

space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode,

which allows the interactive "editing" of a series of way-points and maneuvering burns to obtain a

trajectory which complies with all operational constraints. Through a graphical interactive process,
the operator will continue to modify the trajectory design until all operational constraints are met.

The effectiveness of this display format in complex trajectory design is presently being evaluated in
an ongoing experimental program.

INTRODUCTION

The future space station environment will include a variety of spacecraft co-orbiting with
the space station in close vicinity. Mostly, these spacecraft will be "parked" in a stable location

with respect to space station, i.e., they will be on the same circular orbit. However, some missions

will require repositioning or transfers to and from these spacecraft. In these cases complex types of

maneuvers are anticipated which involve a variety of spacecraft which are not necessarily located at
stable locations and thus have relative motion between each other.

The multivehicle environment poses new requirements which do not exist in conventional

missions scenarios. The conventional scenarios involve proximity operations between only two

vehicles. In these two-spacecraft missions, the scenario is in most cases optimized and precom-

puted in advance, and executed at the time of the actual mission. However, since the set of possible

scenarios in a multivehicle environment is virtually unlimited, the future space station environment

will create scenarios which might not have been precomputed and will have to be planned and exe-

cuted on site. This will require an on-site planning tool which allows, through a fast interactive

process, the creation of a fuel-efficient maneuver which meets all constraints set by safety rules.
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Thedifficultiesencounteredinplanningandcarryingoutorbital maneuvers originate from

several causes. The first is the counterintuitive character of orbital motions as experienced in a

relative reference frame. The orbital motions are expressed in a coordinate frame attached to the

space station and represent relative rather than absolute motions. It would be intuitively assumed
that a thrust in "forward" direction, i.e., in the direction of the orbital velocity vector, would result

in a straight-forward motion. However, after several minutes, orbital mechanics forces will domi-

nate the motion pattern and move the spacecraft "upwards," i.e., to a higher orbit. This will result

in a backwards relative motion, since objects in a higher orbit move slower. Thus, a forward thrust

has an effect opposite from that intended.

A second cause of the difficulty is the different and unconventional way in which orbital

maneuvering control forces are applied. In atmospheric flight, control forces are applied continu-

ously to correct for randomly appearing atmospheric disturbances, or to compensate for atmo-

spheric drag. In contrast, spaceflight in the absence of atmospheric disturbances has a near-

deterministic character. Therefore, spaceflight is mainly "unpowered" along a section of an orbit
with certain characteristics. By applying relatively short impulse-type maneuvering forces at a

given way-point, the characteristics of the orbit will be altered. After application of the maneuver-

ing force, the spacecraft will coast along on the revised orbit until the next way-point is reached.

Third, multivehicle orbital missions are subject to stringent safety constraints, such as

clearance from existing structures, allowable approach velocities, angles of departure and arrival,

and maneuvering bum restrictions due to plume impingement. Design of a fuel-efficient trajectory
which satisfies these constraints is a nontrivial task.

It is clear that visualization of the relative trajectories and control forces in an easily inter-

pretable graphical format will greatly improve the feel for orbital motions and control forces and

will provide direct feedback of the operator's control actions. Furthermore, visualization of the

constraints in a symbolic graphical format will enable an interactive graphical trajectory design in

which, in each iteration step, the design is modified until all constraints are satisfied.

DESCRIPTION OF THE TECHNIQUE

Purpose of Orbital Planning System

The purpose of the interactive orbital planning system is to enable the operator to design an

efficient, complex, multiburn maneuver, subject to the stringent safety constraints of the future

dense space station traffic environment, which enables a chaser to rendezvous with a target space-
craft in a given timespan. The constraints include clearances from structures, relative velocities

between spacecraft, angles of departure and arrival, approach velocity, and plume impingement.

Because of the complexity and counterintuitiveness of orbital motion, and the demands to satisfy

strict safety rules and constraints, fuel-efficient trajectory design will be a complex and difficult

task. The basic idea underlying the system is to present the maneuver, as well as the relevant con-

straints, in an easily interpretable graphical format. This format provides operators with immediate

feedback on the results of design actions, and enables them to closely interact with the system. In

an iterative process, operators will keep changing the design until all constraints are met. The

methods for enabling interactive trajectory design and visualization of constraints are discussed in
detail hereafter.
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Illustrative Example of a Three-Burn Maneuver

An illustrative example of a three-burn maneuver is shown schematically in figure 1,

showing the situation in the orbital plane. Trajectory design can be greatly simplified by expressing

the positions and velocities of co-orbiting spacecraft relative to a space-station-based coordinate

system. This system x°y°z ° has its origin at the the center of mass of the station and is oriented

with the x°oy ° plane locally level with the surface of the Earth, with the x°-axis in the direction of

the station's orbital velocity vector and the z°-axis pointing towards the center of the Earth. Thus,

the x°oz ° plane constitutes the orbital plane. The section of the circular orbit s, followed by the
center-of-mass of the space station is called the "V-bar," and the radial line r, moving outwards

from the Earth center through the space station, is called the "R-bar." For the near environment of

the space station, the V-bar can be considered to be straight and to coincide with the x°-axis, and
the R-bar with the z°-axis.

The trajectory originates from relative position A at time t = to and is composed of two
way-points B and C, which specify the location in space station coordinates at which the chaser

spacecraft will pass at a given time. At a way-point the orbital maneuvering system or other reac-

tion control system can be activated, creating a thrust vector of given magnitude for a given dura-

tion, in a given direction in the orbital plane or out of the orbital plane. The duration of the burn is

considered very short in comparison with the total duration of the mission. In the orbital dynamics

computations this means that a maneuvering burn can be considered as a velocity impulse which

alters the direction and magnitude of the instantaneous orbital velocity vector of the spacecraft.

Since the initial location A is not necessarily a stationary point, the magnitude and direc-

tion of the relative velocity of the chaser at point A is determined by the parameters of its orbit. If

no maneuvering burn would be initiated at t = to, the chaser would continue to follow the relative

trajectory 1, subject to the parameters of its original orbit (see dotted line in fig. 1). However, a
maneuvering burn at t = to will alter the original orbit such that the chaser will follow the relative

trajectory 2, subject to the parameters of a new orbit.

In figure 1 El and v_2 indicate the relative velocity vector of the chaser just before and after

the maneuvering burn, respectively, where El and 72 are tangential to the relative trajectories 1
and 2, respectively. The vector difference between Vl and v_2,Y_a,is the velocity change initiated

by the burn, and corresponds with the direction and magnitude or duration at which the orbital

maneuvering system is activated. Likewise, at way-point B the burn Vb alters the orbit to orbit 3.

Location C is the terminal way-point and is, in this case, the location where the target will

arrive at t = tf. Since the target has an orbit of its own, orbit 4, it will have a terminal velocity at

t = tf. The relative velocity between target and chaser is the vector difference between v3 and v4,

Ec. This vector determines the retroburn that is needed at the target location, in order to bring the
relative velocity between chaser and target to the minimum required for the docking operation.

Inverse Method of Solving Orbital Motion

Interactive trajectory design demands that the operator is given free control over the posi-

tioning of way-points. However, the input variables of the commonly used equations of orbital

motion, as given in reference 1 and derived from references 2-4, are the magnitude and direction
of the burn at t = to, rather than the position of way-points. Therefore an "inverse method" is
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requiredto computethevaluesof abumnecessaryto arriveatagivenway-pointpositionedby the
operator.This methodis outlinedhereafter.

Theequationsin reference1showhowtheorbitalparametersof aco-orbitingspacecraft
canbecomputedfrom its momentarypositionandvelocities,relativeto thespacestation.Thus,for
agiveninitial relativeposition A with X(to), and an initial relative velocity V(to), at time t = to,

the relative position and velocities of a way-point at time t = tl can be computed. However, a

maneuvering burn at t = to will cause a change in the direction and magnitude of the relative

velocity vector v(to). As a result, the position of the way-point at time tl, X(tl) will change as
well.

Consider Va and OCato be the magnitude and direction of the velocity change due to the

maneuvering bum. Then the relative position and velocity at t = tl, X(tl), will be a complex,
nonlinear function of Va and C_a.Consider now that the operator is given direct control over Va and

eta by slaving these variables directly to the x and y motions of an input device such as a control

stick or mouse. An input in either x or y direction will result in a complex nonlinear motion pat-

tern of X(tl). Furthermore, this motion pattern will change with the initial conditions. This

arrangement is highly undesirable in an interactive trajectory design process in which the operator
must have direct and unconstrained control over the positioning of way-points.

It is therefore essential to give the operator direct control over the position of way-points

rather than over the magnitude and direction of the burn. The inverse method by which this is

accomplished computes the magnitude and direction of the burn required to bring the spacecraft

from initial location x(to) to the way-point X(tl) at t = tl.

A Newton-Raphson method has been employed to solve this inverse problem. The operator

commands the position of a way-point by means of the x-y motions of the input device. The

algorithm starts with an initial guess of Va and _a. These values yield a computed way-point which

is usually different from the commanded one. At each program update the values of Va and C_a are

adjusted to bring the computed way-point closer to the commanded one. On the average about three
to four iterations are required to bring the difference between the computed and commanded way-

point effectively to zero. As the operator moves the commanded way-point around in the orbital

plane, the algorithm "tracks" the commanded way-point by continuously making appropriate

adjustments in Va and _a. As a result of this continuous adjustment, the deviation between
commanded and computed way-point will remain relatively small and the Newton-Raphson

scheme will operate close to the optimum. The advantage of the Newton-Raphson scheme is that

convergence with this second-order technique is the best in the near vicinity of the optimum. Since

the program update rate is about 15 Hz, convergence is very fast and the computed way-point is

virtually indistinguishable from the commanded one.

The Active Way-Point Concept

Although a trajectory may be composed of several way -points, only one way-point at a

time, the active way-point, is controlled by the operator. The active way-point should be clearly

distinguishable from the other inactive points, by conspicuous marking, highlighting, or blinking.

While the position and time of arrival of the active way-point can be varied, the position and time
of arrival of all other way-points remains unchanged. However, variations in the active way-point
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will causechangesin thetrajectorysectionsandway-pointmaneuveringburnsjust precedingand
just following theactiveway-point.Theon-linesolutionof the inversealgorithmenablesthese
changesto bevisualizedalmostinstantaneouslyandprovidestheoperatorwithon-linefeedbackon
thedesignactions.

Althoughimpingementconstraintsandapproachvelocitylimits existfor all way-points,it
is usefulto limit thecomputationanddisplayof theseconstraintsto theactiveway-pointonly.This
arrangementsimplifiesandspeedsupsystemupdatecomputationsandminimizesthesymbology
shownon thedisplay.Thejustificationfor this is thattheoperator'sattentionis mainlyallocatedto
theactiveway-pointandits nearvicinity. In asubsequentdesigniteration,theoperatormayshift
theactivationto adifferentway-pointandagainverify whetherall constraintsaremet.

Sinceimpingementconstraintsandapproachvelocitylimits mainlyrelateto thetargetcraft,
it is usefulto visualizethepositionof thetargeton thetargettrajectory,correspondingto thetime
of arrivalat theactiveway-point.Like theactiveway-pointitself,thispositionshouldbeclearly
distinguishablefrom otherpointsaswell.

Way-Point Editing

The trajectory design process involves changes in existing way-points, addition of new

points, or deletion of existing undesired points. An illustrative example of this way-point editing

process is shown in figure 2. In the program the way-points are managed by a way-point stack,

which includes an up-to-date sequential list of the position x, the time of arrival t, and the relative

velocity v just after initiating the burn, of all way-points.

Figure 2a shows two way-points, the initial point _o and the terminal point X1. The initial

way-point is defined by the initial conditions of the situation and cannot be activated or changed by
the operator. The terminal way-point Xl is thus the the active way-point which can be changed.

The corresponding way-point stack is shown on the right. The active way-point box is drawn in

bold. The relative velocity stack shows only the velocity Y.o, which is the required relative velocity

just after the burn at way-point 0, computed by the inverse algorithm, to reach point _x1 at time tl.

Figure 2b shows the addition of a new way-point. This point is added half-way on the
trajectory section just preceding the active way-point. Thus its time of arrival is chosen to be

t = 0.5(ti + ti-1), where i in this case is 1 and relates to the stack before modification. The new

position, Xl and relative velocity, Vl are computed by the "forward" equations given in refer-

ence I, by computing the orbital position at the new time t, using the existing orbital parameters

previously computed with Xo, Vo, and to. The newly computed way-point position, time and rela-

tive velocity are inserted between points 0 and 1 of the stack before modification and the new way-

point is chosen to be the active one. The dotted lines in figure 2 indicate variables which are trans-

ferred without modification and the encircled variables are the newly computed ones. It is impor-

tant to note that since the relative velocities __ and Vl are matched to the required way-points Xl

and x2, respectively, the inverse algorithm does not need to make any adjustments.

Figure 2c shows the results of changes in the newly created way-point on the way-point

stack. Since _Xl and tl are varied, the relative velocity at way-point 0, Vo will be readjusted by the

inverse algorithm and likewise the relative velocity Vl.
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Figure 2d shows the creation of an additional new way-point. Since the active way-point
prior to the addition was point 1, the new point is added half-way between point 0 and 1 and its

position and relative velocity are computed with the forward method. The new values are inserted

between points 0 and 1 of the stack before modification and the new way-point is again set to be
the active one.

In figure 2e way-point 2 is activated. Apart from the shift in active way-point, the stack

remains unchanged. The dotted line shows the the direct-path section between point 1 and point 3

without the intermediate burn at point 2. Deletion of way-point 2 will remove this point from the

stack, and after that close the gap (fig. 2f). However Vl has to be readjusted to fit the new direct-

path section. Starting from the old incorrect value of Vl, the adjustment is made iteratively and

on-line by the inverse algorithm.

Operational Constraints

The multispacecraft environment will require strict safety rules regarding the clearance from

existing structures. Thus, spatial "envelopes" can be defined through which the spacecraft is not

allowed to pass. These spatial constraints can be visualized on the display. The operator must be

able to make a clear judgment whether the planned trajectory clears the spatial constraint, or, he or
she must be able to decide whether to avoid the constraint through an in-plane or an out-of-plane

maneuver. However, the operator is not always able to make these judgments on the basis of one
perspective aerial view or one perspective projection. In this research a graphical enhancement is

used in which the spatial constraint is unambiguously presented on a time-axis display format. This

format and its advantages are discussed later.

Restrictions on angles of departure and arrival may originate from structural constraints at

the departure gate, or the orientation of the docking gate or grapple device at the target craft. Limits

for the allowable angles of departure or arrival can be visualized on the display. In addition, the

terminal approach velocity at the target might be limited by the characteristics of the grapple
mechanism or the docking procedure. Limits for the allowable terminal approach velocity can be
visualized as well.

Way-point maneuvering bums are subject to plume impingement constraints. Hot exhaust

gases of the orbital maneuvering systems may damage the reflecting surfaces of sensitive optical

equipment such as telescopes, infrared sensors, or solar panels, or may cause an undesired transfer

of momentum. Maneuvering bums towards these pieces of equipment are restricted in direction

and magnitude. Limits for the allowable direction and magnitude are a function of the distance to

the equipment and plume characteristics. These limits can be visualized on the display.

Flight safety requires that the relative velocity between spacecraft is subject to approach

velocity limits. In conventional docking procedures this limit was proportional to the range
(refs. 5-7). A commonly used rule of thumb is to limit the relative approach velocity to 0.1% of

the range per second. This conventional rule is quite conservative and originates from visual pro-

cedures in which large safety margins are taken into account to correct for human or system errors.

Although the future traffic environment will be more complex, and will therefore demand larger

safety margins, more advanced and reliable measurement and control systems will somewhat relax

these demands. The effect of these developments on the allowable approach velocity limits is at

present difficult to predict and so is the margin for human error to be taken into account.
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In thisstudy,therelativeapproachvelocityisdefinedasthecomponentof therelative
approachvelocityvectorbetweenthetwospacecraftalongtheirmutuallineof sight.Thelimit on
thisrelativeapproachvelocityis afunctionof therangebetweenthespacecraft.This functionwill
dependon theenvironment,thetask,andthereliability of measurementandcontrolequipment,
andcannotbedeterminedat thisstage.In thisstudyasimpleproportionalrelationhasbeencho-
sen.Theapproachvelocitylimit isvisualizedonthedisplayasacircle indicatingtheminimum
rangebetweenthetwo spacecraftallowedfor thepresentapproachvelocity.If thetargetcraft
appearswithin thiscircle,theapproachvelocitylimit hasbeenviolated.

DESCRIPTION OF THE DISPLAY

Graphics System and Layout of the Display Area

The system has been implemented on a Silicon Graphics IRIS 2400 Turbo Graphics

Workstation with 24 bitplanes of display memory and with a 19-inch, full-color display monitor

with a display resolution of 1024 by 767 pixels. The program is named "NAVIE," which is the
Hebrew word for prophet, after the prophet Elijah, who was characterized by providing trustwor-

thy future information. Operator interaction with the system is through a two-axis, three-button
mouse.

The layout of the display area is shown in figure 3. The display area has been divided into

four viewports. The main area 1 is 750 by 750 pixels and areas 2,3, and 4 are 230 by 230 pixels

each. Viewports 1, 3, and 4 provide information about the spatial situation about the space station,

trajectories, constraints, and orbital maneuvering fuel use; and viewport 2 includes an eight-button

function control panel.

Description of Program Control Modes

The program operates in two modes. The first one, the viewing system mode, relates to the
main display, which shows a perspective view of the space station and its surroundings on the

background of the station's orbital plane. In the viewing system mode, the operator is able to

"explore" the spatial situation about the space station and thus choose a viewpoint location and

viewing direction which focuses and "frames in" on the momentary area of interest. The second
mode is the trajectory design mode, in which way-points are selected, moved, added, and deleted

in order to obtain a multiburn trajectory which complies with the given set of constraints.

Viewing System Mode

The geometry of the viewing situation is shown in figure 4. The space-station-based coor-

dinate system is x°y°z ° with the x°-axis coinciding with the orbital velocity vector, and x°oz ° is

the orbital plane. Figure 4 shows the orientation of the viewing system xeyez e relative to the

space station system. The viewing system has its origin at point A, the xe-axis coincides with the

viewing direction and the image plane is perpendicular to the xe-axis with the screen axes yS and zs

parallel to ye and ze. Point B indicates the intersection of the viewing axis with the orbital plane.

Although the viewing system position, point A, and the angular orientation are defined by three
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displacementsandthreeangles,whichcanbeall controlledindependently,it is usefulto constrain
themotionto thefollowing threetypes.

"Tethered" motion- In the first type of motion, the viewing system tethers about

point B, which is kept timed on the orbital grid, while the distance d between points A and B,

which is the viewing range to point B, is kept constant. The tethered motion is controlled by the

angles _ and 0. The viewing axis x e and the axis ye are located at all times in the plane P

which passes through the point B and rotates about the line CC', which is parallel to the x°-axis,

the V-bar. The line BE is also located in the plane P and perpendicular to the line CC'. _g is the
angle between the y°-axis and the line BE, and 0 is the the angle between BE and the xe-axis.

Thus, the angles _g and 0 control the obliquity of viewing along the orbital plane in the z ° and x °

direction, respectively. This tethered type of motion is very useful for the following reasons.

(1) While the area of interest remains in the center of the display, it allows one to "explore" other

possible areas of interest by changing the angles _g and 0. (2) The line CC' will appear on the

screen at all times as a horizontal line through the center of the display and represents a line parallel

to the V-bar. Thus, while the viewing direction may change, the direction of the V-bar is at all

times recognizable as the horizontal line, passing through the center of the display.

Translational motion- The second type of motion relates to the position of point B in

the orbital plane. Here the x°z ° coordinates of point B are varied, while _, 0, and d are kept
constant. This translational type of motion enables the operator to move areas of interest to the

center of the display.

Ranging motion- In the third type of motion, all parameters are kept constant except for

the range d. This ranging type of motion is useful after areas of interest are located and brought
into the center of the display. "Ranging-in" on the area of interest allows this area to be studied in
more detail.

In the viewing system mode the operator has one-button control over the three types of

motion and can "toggle" in a closed sequence from tethered motion to translational motion to rang-

ing motion and back to tethered motion. The one-button control is useful since viewing system
operations are naturally performed in a sequence of three steps, where in the first step areas of

interest are searched for, in the second step the area localized during the search is moved to the

center of the display, and in the third step the area is ranged in on to obtain the required level of
detail.

Trajectory Design Mode

In the trajectory design mode, the operator has control over the selection, positioning, time

of arrival, addition, and deletion of the way-points which determine the trajectory. Two submodes

exist: the in-plane design mode and the out-of-plane design mode. In the in-plane mode the mouse
controls the x°z ° position of way-points, while the out-of-plane position yO remains unchanged,
whereas in the out-of-plane mode the opposite is the case.

The design process starts with an initial configuration of way-points. Usually there are ini-
tially two way-points, as in the way-point editing example. The terminal point x 1 is the active

way-point. Time of arrival at this active way-point is set to an initial value within the allowable time

span of the mission. The operator has the option to increase or decrease the time of arrival at any
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activeway-point.Thetimeof arrivalattheterminalway-pointis limitedto thetimespanof the
mission,andtheoneof anintermediateway-pointby thetimespansetby theneighboringpoints.

As outlinedpreviously,aconventionischosenin which anewway-pointis addedhalf-
wayonthetimescale,onthetrajectorysectionprecedingtheactiveway-point.Thenewlyadded
way-pointbecomestheactiveoneandcanbemovedto anydesiredlocationandits timeof arrival
canbesetto anyvaluewithin thetimespandeterminedby theneighboringway-points.However,
in somecases,it is usefulto "slide" thenewway-pointalongthetrajectorysectionconnectingits
neighboringway-points.Thepositionon this trajectorysectionis thendeterminedby its timeof
arrivalonly. In thismodethe"locked-on-trajectory"mode,thetimeof arrival is slavedto the
y-motionsof themouse.

Thelocked-on-trajectorymodeisparticularlyusefulfor checkingwhetheroperationalcon-
straintsbetweenthespacecraftandthetarget,or othernonstationaryspacecraft,arebeingviolated.
As theoperatorslidestheway-pointalongthetrajectory,thecorrespondingtargetpositionslides
alongthetargettraceaswell; conflictingsituations,suchasa toocloseflyby, will berecognized
immediately.

Geometrical Enhancements; the "Time-Axis" Format

The purpose of these enhancements is to resolve ambiguities in the spatial situation by pro-

cessing the spatial information and presenting it in a different format. One such format is the time-

axis display which provides unambiguous qualitative and quantitative information about the out-of-

plane situation and the spatial constraints.

The basic idea of the time-axis format is demonstrated in figures 5a-c. From the perspec-

tive view of figure 5a alone, it cannot be clearly determined whether the spatial constraint is vio-
lated or how the trajectory should be planned to avoid it. The view along the z°-axis in figure 5b is

even less clear, because of the curved character of the trajectory. In the time-axis format of fig-

ure 5c, the out-of-plane deviation is plotted as a function of the traveled time along the path. The

spatial constraints are visualized as follows. At each point on the traveled time axis, at the corre-

sponding location on the trajectory, a line is placed perpendicular to the orbital plane. Sections of

this line which are within these constraints are identified and plotted on the time-axis display of
figure 5c as a set of vertical bars. Where the trajectory curve passes through these bars, the spatial

constraints have been violated. Reshaping of the in-plane trajectory will alter the size and location

of the constraint bars on the time-axis display. From the display it can be clearly determined

whether the constraint should be avoided through an in-plane or an out-of-plane maneuver.

The format of the time-axis display used in the program is shown in figure 6. The time-

axis is marked in quarters of an orbit. The shaded areas represent the nighttime section of the orbit.

Both the target and the chaser trajectories are shown. It should be noted however, that although the

chaser and target share the same time axis, they relate to different spatial trajectories. Therefore, the

spatial constraint bars relate to the chaser trajectory only.
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Symbolic Enhancements

Yi_ualization of departure constraints- Procedures at the departure gate might con-

strain the relative angle of departure and the magnitude of the departure burn. The in-plane con-

straints at the departure gate are illustrated in figure 7. The size of the bum vector is made propor-

tional to the bum magnitude, with a scale factor of 500-m length per 1-rrgsec bum, on an orbital

grid with lines spaced 200 m apart. The departure constraints are satisfied if the burn vector is

within the solid "bracketed" arc. This arc is specified by the arc center angle 70, the arc aperture

7, and the arc radius e. Note that maneuvering burns are expressed in terms of a velocity change

rather than of a thrust force. The actual duration and thrust force of the burn depends on the space-
craft mass and the thruster characteristics.

In order to keep the display free from unnecessary symbology, it is useful to present the
constraint only when it is close to being violated. If the bum vector is within the area enclosed by

the dotted line in figure 7, the constraint is not drawn. The radius of the dotted arc is 80% of e,

and the aperture angle is 10 ° smaller than Y.

It should be noted that the situation in figure 7 relates to a stationary departure gate. The

spacecraft trajectory in this case is aligned with the burn vector. For a departure gate which moves
with respect to the space station system, this will not be the case. In this case the burn vector will

signify the relative direction of departure with respect to the moving gate, rather than with respect

to the space station. But this vector is subject to the departure constraints and not the velocity

vector of the trajectory, which is relative to the space station. Therefore, the symbology is valid for

departure from a stationary as well as a nonstationary gate.

The out-of-plane constraint at the departure gate is illustrated in figure 6. The initial out-of-

plane component of the burn vector has to be within the impingement constraint brackets. The out-

of-plane burn scale factor is 500-m length per 1-m/sec burn. If the bum magnitude is less than
80% of the allowed maximum value, the constraint is not drawn.

Visualization of arrival constraints- The arrival procedures constrain the angle and

magnitude of the terminal velocity vector relative to the arrival gate. The in-plane constraints at the
arrival gate are visualized in figure 8. The scale factor f r the relative terminal velocity vector is

500-m length per 1-m/sec terminal velocity. The arrival constraints are satisfied if this vector is

within the solid arrival arc. This arc is specified by the arc center angle 80, the arc aperture 8, and
the arc radius rl. The arrival arc is visualized at all times.

The out-of-plane limits on the terminal approach velocity are depicted in figure 6. The
approach velocity has to be within the constraint brackets. If the velocity is less than 80% of the
allowed maximum value, the constraint is not drawn.

Visualization of plume imoin_ement constraints- Plume impingement constraints

limit the magnitude and direction of maneuvering bums. The in-plane impingement constraints of a

burn given at a way-point towards the target are illustrated in figure 9. The burn-vector symbol,

whose size is proportional to the magnitude of the burn, is not allowed to cross the bracketed
impingement constraint arc with aperture [3 and radius _5. The variables 13and _ are a function

of the distance between way-point and target IAX.I = IXT ~ XI, whose function depends on the

characteristics of plume and target. In this example, B is chosen to be constant and c propor-
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tional to IAxl.If theburnvectordoesnotcrossthedottedbracketedarc,theconstraintis not
drawn.Theradiusof thedottedarcis again80%of c andtheapertureangleis 10° largerthan 13.

Visualization of the anoroach velocity constraint- The method of visualizing the

relative approach velocity limit is shown in figure 10. The relative approach velocity of the chaser

towards the target is given by the vector Av = v - VT. The line-of-sight vector of the chaser

towards the target is Ax = XT - X. The relative approach velocity vector Y.r is the projection of

Av on Ax and is given by

v_V_r= (AvTAx)A2£/IAxI 2 (1)

where T denotes the transpose, or inner product. The limit on I__1is a function of the distance

between chaser and target IAxl. In this example, a simple proportional relationship has been

chosen. Thus, for a given approach velocity Iv_rl,the allowable range p can be computed and

visualized by a circle centered about the chaser's position. The approach velocity constraint is vio-

lated when the target is located within this circle. The circle is visualized when p is greater than
80% of IAxl.

Orbital fuel use- The orbital fuel use is displayed in viewport 4. The orbital fuel is

expressed in total m/sec velocity change rather than kg fuel mass. The actually spent fuel mass

depends on the spacecraft and the thruster characteristics and will be proportional to the total

velocity change. A fuel dial is shown which indicates the percentage of fuel remaining from the

total amount allowed for the mission. The remaining fuel is indicated by a yellow sector, and fuel

use in excess of the allowed amount is indicated by this sector turning red. In addition to the fuel

dial, the percentage of fuel left and total fuel use are displayed numerically.

Trajectory time markers- Along the chaser and the target trajectories, time markers are

placed at regular intervals. The time marker is a small bar, perpendicular to the trajectory, provided

with a number which indicates the time in minutes after starting the maneuver. Special care is given

to the automatic repositioning of the numericals after a viewing system change. The numericals are
placed such that they do not "clutter" the trajectory and clearly point to the corresponding time
marker.

Computational Enhancements

Computation of the relative trajectories is a time-consuming process, which, if done at each

program update, will result in an unacceptable low update rate, jerky motions, and poor control

over the positioning of a way-point. This can be prevented by disabling the trajectory computations
and starting them only after the operator has completed the positioning of a way-point. At each

program update interval, the x and y output values of the mouse are compared with the values from

the previous step. ff no change has taken place, a timer is initiated. The trajectory computations are

started 0.3 sec after initiating the timer. After the trajectory is computed, the computed values are

stored and displayed and no further computations will take place until the next change in way-point

position. The 0.3 sec delay is essential for assuring that the operator has completed the positioning

process. Often, small corrections are made after the way-point has been moved the first time.

Experience has shown that, in most cases, no more changes are made after a 0.3 sec delay.

Sometimes subsequent changes are made after the operator has reviewed the position. These

37-11



changesareseldommadeearlierthan0.5secafterthelastchangeandthisis afterthetrajectoryhas
beenrecomputed.

It shouldbenotedthatalthoughthetrajectorycomputationsaresubjectto delay,this is not
thecasewith thecomputationof variableswhichrelateto theway-pointsthemselves,suchas
maneuveringburnvectors,relativevelocityvectors,andoperationalconstraints.Thecomputation
of thesevariablesis lesstime-consumingandis doneateachprogramupdateinterval.Continuous
updateof thesevariablesisessentialinorderto givetheoperatorimmediatefeedbackof theeffect
of acertaindesignactiononmaneuveringburnsor approachvelocities.

DISCUSSION

The proposed interactive orbital planning system should be seen as a preliminary step in

determining the display format which will be useful in the dense space station environment. The

examples shown here deal with the most general situation, which involves departures from, and

arrival at, nonstationary locations. However, most of the co-orbiting spacecraft are likely to be

"parked" on the V-bar, and thus at stationary positions. Missions with spacecraft at nonstationary

positions and substantial out-of-plane motion thus represent a worst-case situation, and are chosen
here to demonstrate the capabilities of interactive graphical trajectory design, rather than represent-

ing the common type of maneuver to be executed at the station.

Likewise, it is hard to predict whether the constraints used here will be relevant and realistic

in the future space station environment. They predict in a broad sense the type of restrictions which

are expected in the multivehicle environment, e.g., limitations on approach rates, plume impinge-
ment, and clearance from structures. It is also likely that the future environment will pose different

constraints, which might originate from the specific character of a mission, like a specific scenario

in which a telescope or manufacturing platform is approached and serviced.

A further restriction of the display relates to the way the orbital maneuvering system is acti-

vated. Only pure impulse maneuvering burns are considered, in which the duration of the burn is

negligible with respect to the duration of the mission and in which these burns cause major changes

in the relative trajectories. Station-keeping or fly-by missions, however, require a more sustained
type of activation, such as periodic small bums with intervals of several seconds over a time span

of several minutes. A more distributed way of activating the orbital maneuvering system can be

introduced in which the operator has control over the frequency and time span of the activation.

Ways should be found which enable this type of control to be activated and visualized.

A last restriction relates to the way the spatial trajectory is visualized. The perspective main

view shows the projection of the actual trajectory on the orbital plane, rather than the trajectory

itself. The reason for this is two-fold. The orbital trajectory, with its typical cycloidal shape, when

shown without lines projected on the orbital reference plane is ambiguous and might seem to bend

out of the orbital plane. This illusion results from the viewer's familiarity with objects such as a
coil spring and has first been reported in reference 8. Therefore, the trajectory cannot be shown

without its projection on the orbital plane. Second, the symbolic enhancements and burn vectors
relate to the in-plane motion and match with the trajectory projection on the orbital plane. Thus,

both the trajectory and its projection should actually be visualized. However, in a perspective plan
view, i.e., viewed along the y°-axis, both the trajectory and its projection on the orbital plane will
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showupasseparatecurveswhichmightbehighlyconfusing.Thereforeacompromisehasbeen
sought,in whichtheprojectionis showntogetherwith "pedestals"placedat theway-points
orthogonalto theorbitalplane,whichmarktheactualtrajectoryattheway-points.

In spiteof theserestrictions,theproposeddisplayclearlydemonstratestheusefulnessof
interactivegraphicaltrajectorydesign.Theuseof thegraphical,symbolical,andcomputational
enhancementsindicatesthedirectionin whichasolutionfor amultivehicleenvironmentdisplay
shouldbesought.A still-unansweredquestionrelatesto thedegreeof automatizationwhich should
beintroducedin thedisplay.Partsof themissioncouldbeperformedthroughtheuseof optimiza-
tion techniques,e.g.,tofind thefuel-optimalway-pointwhichclearsaspatialconstraintin partof
themission,or to find a way-pointwhichsatisfiestheterminalconstraints.However,sincethe
solutionspaceof acomplexsituationisvirtually infinite, it is yetdoubtfulwhetherthismissioncan
beperformedentirelyautomatically.It is thereforeexpectedthatfrequentlyoccurringroutineoper-
ations,suchassearchingthelocalsolutionspacefor theoptimal locationof away-point,mightbe
handedover to anoptimizationscheme.Thesesolutionscanbereviewedby theoperator,and
manuallychangedif necessary.

In apresentlyongoingexperimentalprogram,operatorsarecarryingout aseriesof design
missionswhichvary in complexityandconstraints.In atutorialsession,theoperatorsarefirst
familiarizedwith theorbitalmotions,orbitalcontrolmethods,operationalconstraints,andthe
systemcontrolfunctionsof theviewing systemmotionsandway-pointeditingprocess.Each
operatoractionis time-markedandrecorded.Statisticsof theviewing systemactionswill show
"preferred"viewing situationsfor eachcondition.Reviewof thetrajectorydesignactionsmight
identify theexistenceof heuristicdesignruleswhichmightbeutilizedin automateddesign
schemes.
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VEHICLES 1

ABSTRACT

Teleoperation of land vehicles allows the removal of the operator from the vehicle to a

remote location. This can greatly increase operator safety and comfort in applications such as secu-

rity patrol or military combat. The cost includes system complexity and reduced system per-

formance. All feedback on vehicle performance and on environmental conditions must pass

through sensors, a communications channel, and displays. In particular, this requires vision to be

transmitted by closed-circuit television with a consequent degradation of information content.

Vehicular teleoperation, as a result, places severe demands on the operator.

Teleoperated land vehicles have been built and tested by many organizations, including
Sandia National Laboratories (SNL). The SNL fleet presently includes eight vehicles of varying

capability. These vehicles have been operated using different types of controls, displays, and

visual systems. Experimentation studying the effects of vision-system characteristics on off-road,

remote driving has been performed for conditions of fixed camera versus steering-coupled camera
and of color versus black and white video display. Additionally, much experience has been gained

through system demonstrations and hardware development trials. This paper discusses the pre-

liminary experimental findings and the results of the accumulated operational experience.

INTRODUCTION

Remote control of land vehicles can be accomplished through provision of auxiliary sen-

sory channels on-board the vehicle (inside-out control) or through observation of the vehicle in the

world (outside-in control). Outside-in control is effective only over short visual ranges for vision

with no obscuration by smoke, fog, or obstacles. Inside-out control (referred to as teleoperation in

the remainder of this paper) is generally applicable for activities such as security patrols or military

combat in which any humans present will be at risk. The cost of such operation is increased com-

plexity in the vehicle and control system, since all knowledge of the environment and the condi-
tions of the vehicle have to be sensed, communicated to a control station, and displayed to the

human operator. A further consequence of removng the operator from the vehicle is reduced

capability for action, since the information content of the operator feedback is degraded by the

intermediary channels.

1This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under

contract number DE-AC04-76DP00789.
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Vehicles, control stations, and teleoperated systems have been built, tested, and demon-

strated by a number of organizations. There is little definitive information, however, on the human
factors involved in land vehicle teleoperation (ref. 1). Most information has taken the form of a

description of vehicle design or proposed application, with only a few papers reporting actual

experimental results. Most of the knowledge base is represented by personal experiences and

unreported anecdotal evidence. This paper attempts to expand the data base through a presentation

of some of the preliminary results of experimentation in teleoperation at Sandia National Laborato-
ries and through discussion of the observations of Sandia personnel gathered over several years of

teleoperation experience.

TELEOPERATION SYSTEMS

Sandia National Laboratories has been actively studying teleoperation for several years.

The major effort has entailed the development of a fleet of wheeled vehicles ranging in size from
small, interior test beds to large, road and off-road commercial and military vehicles (ref. 2).

These vehicles (shown in fig. 1) are being used to conduct feasibility studies on the application of

teleoperated vehicles to the physical security and military needs of the U.S. Government. In all of
these vehicles, actuators operate the vehicle throttle, brakes, and steering. Control may be derived

from manual input at a remote driving station or through some level of automatic control from a

digital computer. On-board processing may include simple vehicle control functions or may allow
for unmanned, autonomous operation. Communication links are provided for digital communica-

tion between control computers, television transmission for vehicle vision, and voice for local

control.

Control stations have been developed to support remote operation of the Sandia vehicle

fleet. Capabilities range from single television monitor stations with vehicle feedback limited to an
audio channel (shown in fig. 2), through large, multiscreen, panoramic displays with computer-

generated graphics representations of vehicle speed, pitch, roll, and heading (fig. 3). Vehicle
camera mountings have included a single fixed camera, multiple fixed cameras, and cameras slaved

to the vehicle steering gear. To date, Sandia has not experimented with stereo vision or with head-

slaved displays, although members of the staff have operated such equipment at other locations.

Under the sponsorship of the U.S. Army Missile Command, through the Teleoperated

Mobile Antiarmor Platform (TMAP) Project, Sandia has embarked on a major set of experiments to

verify some of the observations regarding the "best" driving display (ref. 3). In particular, the

experimentation addresses the problems of detection and identification of obstacles in the path of

the vehicle. Specific questions include the effect of color versus black and white, the utility of

increasing the horizontal field of view through panning a camera in response to steering wheel
movements (steering-slaved control), and the errors in operator interpretation of size and distance

information as presented by the television system.

EXPERIENCE

The experimentation on obstacle detection and vehicle control being performed for the

TMAP Project represents the only rigorous data base development in process at Sandia. In this
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testing, 18 subjects teleoperated a vehicle over a marked off-road course which contained numer-

ous obstacles. An additional 18 subjects participated in a video simulation of the same marked
course. Most of the data analysis for this series of tests has been completed (refs. 4 and 5).

Additional tests and experimentation are being planned.

The remainder of the experience base at Sandia has been derived from operation of vehicles

during hardware and software development and system demonstrations. Operators have ranged

from well-trained, highly experienced personnel through people that had not previously driven a

remotely controlled vehicle. The primary source of data has been the subjective comments of oper-
ators and observers.

The analysis of accidents involving teleoperated vehicles has provided additional informa-

tion. Table 1 provides a listing. Some of these accidents occurred while the operator was observ-

ing the vehicle directly (outside-in operation) and were predominately depth-perception problems

involving vehicle clearance or stopping distances. Control reversal caused one accident while

operating the vehicle in the outside-in mode. In this accident, the vehicle was heading toward the

operator. The operator wanted the vehicle to go toward the left of the operator (operator left).

Since the vehicle was approaching the operator, this required the vehicle to turn to the right with

respect to its direction of travel. The operator became disoriented and issued a left command. The
vehicle responded by veering further to vehicle left (operator right), consequently colliding with a

parked car.

TABLE 1.- ACCIDENT HISTORY

VEHICLE 1 INCIDENT [ CAUSE

Outside-In Operation

Dune Buggy

Dune Buggy

Dune Buggy
Suzuki

Suzuki

Hit fence
Hit tree

Hit fence

Hit post
Hit car

Underestimated stopping distance

Depth perception

Underestimated stopping distance

Depth perception
Control reversal

Inside-Out Operation
Suzuki

Suzuki
Suzuki

Suzuki

Suzuki
Suzuki

Suzuki

Suzuki

Suzuki

Rollover

Rollover
RoUover

Rollover

Rollover
RoUover

Rollover

Rollover

Rollover

Loss of control on hill

Loss of control on hill
Hit traffic cone

Loss of control on hill

Loss of control on hill

Loss of control while backing

Loss of control, hit bump
Loss of control on hill

Loss of control_ hit bump

All of the accidents involving teleoperation (inside-out control) have been rollovers. The
particular vehicle involved is a small Suzuki LT50 four-wheel, all-terrain vehicle shown in fig-

ure 4. The rear wheels are driven through a single-speed drive with a centrifugal clutch. The

vehicle is capable of a 15-mph top speed on flat ground. Control inputs from the operator are

through the control station illustrated in figure 2. Figure 5 shows the view provided to the oper-

ator. In all but one incident, the vehicle was being operated off-road on a motor-cross track with
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steep slopes, high banked corners, and high berms at the edges of the mack. The only exception
was a rollover caused by hitting a traffic cone while operating on a flat asphalt parking lot.

OBSERVATIONS

A number of observations regarding important parameters, operational considerations, and

system design features have been derived from Sandia experiences. These are presented below

strictly as indicators since, in the absence of hard experimental data, it is not clear that all are gen-

erally applicable. Likewise, not all system implementations are represented.

Field of View

It is very difficult to operate a vehicle in restricted space with a narrow field of view.

Operations of a Jeep Cherokee on normal roads and parking lots were performed with a single

camera, 40 ° field-of-view system. The operator was not comfortable turning corners. Installation
of two additional cameras, to provide a total of 120 ° field of view resulted in much "easier" opera-

tion. Additional tests have been run using a steering-slaved camera, both on the Jeep Cherokee

and on the Suzuki all-terrain vehicle. Steering-slaved viewing provided sufficient effective field of

view to allow turning tight corners and avoiding obstacles. Provision of a mechanism to allow the

operator to force the camera further (an auxiliary pan control) was even more effective.

Resolution

Camera resolution does not seem to be a factor in the ability to teleoperate a vehicle in the
absence of obstacles. Sandia has operated vehicles with malfunctioning communications links

resulting in extremely poor resolution. As long as operations take place on well defined areas

(such as well marked roads) and there are no obstacles in the path of travel, an operator can suc-

cessfuUy maneuver a vehicle from one point to another. High resolution does appear to be impor-

tant when many sizes and types of obstacles are present and for operation off-road where identifi-

cation of best path is important.

Color/Black and White

Work with television surveillance systems has indicated that the increased resolution possi-

ble with black and white equipment is much more important than any additional information con-

tained in the color signal. This does not necessarily appear true for teleoperation. Color provides

additional cues leading to more accurate obstacle recognition and course planning. For example,

the difference between dirt and asphalt is important for driving, but cannot be determined from a

black and white television picture. Sandia has also found that orange traffic cones (with the color

chosen for maximum visibility) tend to disappear on black and white television. These have been

used to establish courses during demonstrations and experimentation. Using black and white tele-
vision, it was found to be necessary to cover the cones with white paper to so that they could be
seen.
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Vehicle Vibration

Vehicle vibration and bounce has not been observed to significantly degrade the displayed

video scene. The small Suzuki has no suspension (springs or damping) other than its large, soft

off-road tires. During operations which lead to the vehicle bouncing enough to actually leave the

ground, the video remains relatively clear and usable. No operator has ever commented that vibra-

tion or bounce in the picture was bothersome.

Distance Estimation

As seen from the accident reports, distance estimation during outside-in driving is a prob-

lem. It also creates difficulties when using inside-out control. As reported by Spain (ref. 6) in a

related set of experiments, operators using a head-mounted display consistently ran into pylons

marking the end of a parking place. The feeling of being further from obstacles and landmarks

than the actual position has also been reported by most operators of Sandia vehicles. For all of the

systems utilized in these observations, however, the display was smaller than geometric similarity,

resulting in a scene minification between 0.4 and 0.7. As discussed by Roscoe (ref. 7), it can be

anticipated that size and distance judgment errors can be expected for these conditions. To achieve
better results, scene magnification of approximately 25% is required.

Negative Obstacles

Terrain features such as ditches, holes, and drop-offs are extremely difficult to see using

television. Negative obstacles such as these have contributed to many of the problems in teleoper-

ating vehicles. In most cases, small ditches cannot be differentiated from variations in ground col-
oration until the vehicle has hit them. At that point, the horizon on the video scene changes, indi-

cating that the vehicle just hit a ditch. It can be anticipated that stereo vision could help in this

problem, but no experimentation has been reported.

Tilt and Roll

The large number of rollovers reported establish vehicle tilt and roll control as a major

problem. In the Suzuki driving system, the only feedback is the video signal from the camera and

an audio pickup providing engine sound. Vehicle attitude parameters are neither measured nor
displayed. The typical accident scenario entails "launching" the vehicle from a ramp or attempting
to traverse a side slope which is too steep for the vehicle to maintain stability. Most rollovers have
occurred at close to maximum vehicle speed (about 10-15 mph) and have been a result of ground

features representative of extremely challenging terrain. These have included hills with up to 45 °

slopes and highly banked comers on a motor-cross course. As the rollover occurs, the operators

express surprise. In debriefing, it appears that the operator had no indication that the vehicle was

approaching a dangerous condition.
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Overcontrol

A typical characteristic of novice operators is extreme steering overcontrol. The operator

applies a small steering input to the vehicle, but no result is immediately seen. The steering input is
increased until a response is finally observed. The resulting turn is more than intended so the

operator applies a small correction. Again, the response is not seen so more correction is applied,
etc. The outcome is vehicle travel oscillating about the desired path. Operators report this to be a

very stressful situation. Overcontrol has also contributed to several of the vehicle rollover acci-

dents. The operator applied excessive steering input, sending the vehicle over the edge of a berm.

Observing novice drivers learning to control the vehicle, it is apparent that considerable internal
control is being exercised as the operator adapts. After some minutes of operation, steering opera-

tion is considerably slower and at lower amplitude, resulting in smoother vehicle control. Spain

(ref. 6) reports similar findings.

Navigation

An associated problem in vehicle teleoperation is the difficulty of maintaining spatial orien-

tation with respect to major landmarks, map features, or compass directions. It is not uncommon

for operators to become lost on the motor-cross course. Even with landmarks and a map of the

course, they have not been able to determine how to return to the starting location without
assistance.

SUMMARY AND CONCLUSIONS

Operational experience has been gathered at Sandia through development, test, and demon-
stration of a number of vehicles. A large experimental program in vision system requirements for

teleoperation is also in process. Through the knowledge gained in these programs, several key
areas can be identified as critical to successful control of a teleoperated vehicle. The primary area is

the quality of the visual display provided to the operator. It has been shown that vehicles can be
controlled in restricted environments with extremely poor conditions of viewing. As viewing

improves (both in resolution and field of view), better control can be expected.

Negative obstacles create difficulty in that operators cannot distinguish them from other
terrain features which do not affect vehicle travel. The result is hitting ditches, holes, or berms at

excessive speed.

The interaction of the vehicle with the environment, as interpreted through the mediating

effects of the television display system, can lead to poor control capabilities and hazardous operat-

ing conditions. Overcontrol of the vehicle steering, coupled with the operator's inability to accu-

rately perceive vehicle attitude and terrain requirements has led to a number of accidents. This can
be partially linked with the absence of kinesthetic feedback to the operator. Experimentation with
vehicle simulators has shown a distinct lag in response to environmental inputs, such as wind

gusts, when no kinesthetic feedback is present (ref. 8). With the addition of kinesthetic feedback

to the operator (simulator platform motion), response time to sudden wind gusts dropped from an

average of 0.56 sec to an average of 0.44 sec. Similar results have been reported for the addition

of steering wheel torque feedback, thus providing "feel of the road" to the operator (ref. 9). The
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lack of kinesthetic feedback is similar to operating with a time delay in the control system.

Additional lags are introduced by the communications systems and vehicle actuator and control

systems.

Given the ability to maneuver a teleoperated vehicle in the real-world environment, the

problem of navigation is encountered. Operators tend to get lost, disoriented, and confused when

provided with visual input and maps. The effect of addition of vehicle heading, plotting of route

traveled, or other aids remains to be investigated.
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INTRODUCTION

Computer-generated displays are becoming increasingly popular in aerospace applications.

The use of stereo 3-D technology provides an opportunity to present depth perceptions which oth-

erwise might be lacking. In addition, the third dimension could also be used as an additional

dimension along which information can be encoded.

Historically, the stereo 3-D displays have been used in entertainment, in experimental facil-

ities, and in the handling of hazardous waste. In the last example, the source of the stereo images

generally has been remotely controlled television camera pairs.

This paper describes the development of a stereo 3-D pictorial primary flight display used

in a flight-simulation environment. The purpose of this research is to investigate the applicability

of stereo 3-D displays for aerospace crew stations to meet the anticipated needs of the 2000-2020

time frame. Although the actual equipment that could be used in an aerospace vehicle is not cur-

rently available, the laboratory research is necessary to determine where stereo 3-D enhances the

display of information and how the displays should be formatted.

HARDWARE/SOFTWARE CONFIGURATION

The hardware consists of a VAX 11/780 computer, an Adage 3000 raster programmable

display generator (PDG), and a Stereographics 3-D display stereoscopic system. A FORTRAN

aircraft simulation is used to provide parameters to the display programs residing in the

Adage 3000. The display programs are written in a "C" language known as ICROSS-3000, with

a graphics-enhancement package known as the Real-Time Animation Package (RAP). (RAP is a

proprietary software product developed at the Research Triangle Institute.)

The Stereographics display uses liquid crystal shuttered glasses and specially adapted
hardware which divides each video frame into two fields corresponding to the left- and right-eye

views, each at half the resolution. The PDG outputs a 60-Hz repeat field, 512 x 512 pixel image.

The stereo display system converts this input to a 120-Hz repeat field, 216 x 512 pixel output with

1Lt. Col., USAF. Detailed to the NASA Langley Research Center.
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alternatingleft- andright-eyefields. Figures1and2 showamonocularversionof thedisplay.
Figure3 showsasimilardisplaywith left- andfight-eyestereoviewsastheywouldappearona
conventional60-Hzmonitor. TheStereographicssystemconvertstheinput shownin figure 3 and
generatesthestereopairssimilarto thosein figures1and2, butwith only half theverticalresolu-
tion. Theliquid crystalshutteredglassesaresynchronizedsothateacheyeseesonly oneof the
stereoviews.

A stereoimagepair containstwicetheinformationcontainedin amonocularimage. There-
fore,ona system with limited video bandwidth, either the video frame rate or the number of lines

must be reduced when stereo displays are being generated. The current system maintains frame

rate by halving the number of lines. Flicker, which was a problem with other systems, is thus

eliminated. The system also performs the conversion of the video signal, and the PDG responds

as if it were outputting its customary 60-Hz repeat field image. The liquid crystal shutter tech-

nology is much faster than the video frame-rate-display capabilities; therefore, the stereo system

does not impose any bandwidth limitations.

DISPLAY FEATURES

The main features of the display are an own-ship symbol, a perspective follow-me target

ship, two different 3-D tracks showing the path of the target ship, a ground grid around the
runway, a pitch grid on both the left and fight sides of the display, and digital readouts for

altitude/heading/airspeed. The digital readouts display the instantaneous values for the own-ship

and the desired preprogrammed flightpath. Because the own-ship remains fixed relative to the
other display elements, an inside-out (i.e., moving horizon) display is represented.

Generating the Stereo 3-D Effect

The display program needs to generate the left- and right-eye views of the display. Given
distinct x, y locations of each eye, the calculation of the viewing transformations are described by

Foley and Van Dam (ref. 3).

Two parameters are used to control the stereo 3-D effect: zero-parallax distance and inter-

ocular separation. In general, parallax refers to the positional discrepancy in the left- and right-eye

views of a point in the display. The parallax is zero when the corresponding points in each view

occupy the same relative screen location. Points in the display at the zero-parallax distance from

the eye appear to lie in the plane of the screen. Points closer to the pilot than the zero-parallax dis-

tance appear to lie in front of the screen, while points farther from the pilot appear to lie beyond the
screen. In addition, the interocular distance controls the apparent relative depth of objects in the

display. The greater the interocular distance, the more powerful the stereopsis effect. By com-

paring the apparent depth of the target ship with the own-ship symbol, the pilot has an indication of

position error. This stereo 3-D effect reinforces the depth cue provided by the relative size of the

perspective target ship.

When viewing objects in the natural environment, the eyes must perform the separate func-

tions of converging and focusing on a point of interest. In a stereoscopic display, although the

eyes must converge on an object, they focus on the plane of the screen regardless of the apparent
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distance.Onerequirementof astereo3-Ddisplayis to minimize that disparity (ref. 4). This is

accomplished by keeping the principal objects near the zero-parallax distance where the focus and

convergence relationship is correct.

After setting the zero-parallax distance at the desired distance from the aircraft to the target

ship, the size of the target ship becomes a distance cue. For example, if the pilot is following too

closely, the target ship appears larger on the screen and projects out of the plane of the screen
towards the pilot. Conversely, if the pilot drops behind the target ship, it appears to shrink in size

and recede into the background. The combination of stereo and size cue serves as an important
error indicator.

In this display, the zero-parallax distance is set to a nominal following distance. The inter-
ocular distance was established empirically at 8 ft. Moving the eyes that far apart is equivalent to

shrinking the scale of the scene proportionally. Such distortions enhance the pilot's ability to per-

ceive the sensations of depth. They are also necessary because of inherent limitations of the hard-

ware. The precision in rendering the left- and fight-eye views is limited both by the display reso-

lution and the arithmetic precision of the display processor (i.e., 16-bit fixed point).

If a fixed time lag rather than a f'Lxed distance is desired, the zero-parallax also could be
dynamic. In that case, the zero-parallax distance would be a function of the time lag and the

instantaneous velocity of the target ship.

Within the 3-D display, apparent depth had to be assigned to 2-D symbols such as digital

readouts and the pitch scale. Two possible choices are the zero-parallax distance or the maximum

distance. If they are set at the zero-parallax distance (i.e., drawn with the same left- and right-eye

view), they would be perceived by the pilot as if they were being looked past in order to see the
part of the 3-D display beyond the zero-parallax distance. Earlier informal evaluation has shown

the resulting perception to be disorienting. Instead, by placing the 2-D symbols at the maximum

distance, they appear natural and unobtrusive.

Care must be taken when def'ming the left- and fight-eye transformations. Figure 4 illus-

trates two ways of conceptualizing the transformations. In figure 4a, the views are converged by

rotation of the viewing pyramid. In figure 4b the viewing pyramids are sheared. The latter
approach is preferred, as the projection planes in each view remain parallel. Achieving conver-

gence by rotation creates artifacts which can not only cause eye fatigue, but also can interfere with

the pilot's perception of depth (ref. 4). Although the rotation method is easier to implement, the

shearing approach has become the standard in 3-D graphics software (refs. 1 and 2).

Own-Ship Symbol

Figure 5 shows the evolution of the own-ship symbol. The original configuration, fig-

ure 5a, presented the pilot with two problems. First, it was impossible to perceptually fuse the

right- and left-eye viewpoints to form the 3-D image. This fusion problem was surprising,
because the signposts also were made of single, straight lines, but there was no problem with their

visual fusion. An additional problem was that the own-ship symbol tended to "get lost" in the

display. The signpost symbol was constructed of perpendicular horizontal and vertical lines; the

same was true of the own-ship symbol. Therefore, there were many instances in which the own-

ship symbol would overlay the signposts and could not be perceived.
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In orderto increasethepilot's ability toperceivetheown-shipsymbol,thecenter slanted

lines were drawn as shown in figure 5b. Although the ability to perceive the symbol was greatly

increased, there was still the problem of inability to visually fuse the stereo 3-D image.

Figure 5c was originally constructed to further enhance the pilot's ability to perceive the

own-ship symbol; it worked. A serendipitous benefit was that the symbol now visually fused. At

this time there is no theoretical explanation for the fusion phenomena.

INITIAL RESEARCH

The initial research with the display willbe a study of recovery from flightpath offset.

Pilots will be initiated on the nominal flightpath. After 2 see, they suddenly will experience a
flightpath offset. They will be required to make the stick input to rejoin the nominal flightpath.

Visually evoked potentials will be triggered from the sudden flightpath offset. In addition, reaction

times, response accuracy, and a projected workload estimate also will be recorded. The Subjective

Workload Assessment Technique (SWAT) will be used for the workload estimate (refs. 5 and 6).

A test for stereoscopic acuity will be administered prior to data collection. Recent anecdotal

evidence indicated that some subjects tend to lose the ability to use the stereoscopic cue after
prolonged exposure to it. Therefore, stereoscopic acuity also will be measured immediately after a

long series of trials with the stereo 3-D cues.

In addition to using stereo 3-D or monocular cues as an independent variable, the inclusion
or exclusion of the target ship will be the second independent variable. The last independent vari-

able will be the pathway. There either will be the signpost or a monorail pathway for the subjects
to follow.

FUTURE RESEARCH

The initial research will use the stereo 3-D cues to represent geographic information. In the

"real world," objects are geographically separated by space, and the displays will attempt to create
the perception of that geographic separation.

In contrast, one line of future research will use the third dimension as a dimension to

encode new information for the pilot. For example, presume that there is a pictorial display which

is entirely in the plane of the screen and that depth perception is simulated with monocular cues

such as linear perspective. If a pilot were using that display in a current aircraft, and if the airspeed

were to get too low, an audio display (i.e., a horn) would sound. The audio display is an alerting

display, and the pilot must know to then look at the visual display for speed.

However, part of the pictorial display is a box with digital readouts for instantaneous actual

and desired airspeed. Using the same airspeed error example, the box with the airspeed would

modulate in the third dimension (i.e., along the z-axis) as the alerting cue instead of using the audio

cue as the alerting cue. In this manner, new information would be presented to the subjects in the
third dimension.
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Fromahumanfactorsperspective,thatis apotentialwayof decreasingthetotalnumber of

cockpit displays and also to make the alerting cues more nearly intuitively obvious. There are
many research questions to be addressed. First, can it be demonstrated that the proposed use of

stereo 3-D is quantifiably better than the use of audio alerting cues? Some of the other questions

concern the rate and perceived depth of modulation in the third dimension. For example, should

the rate or perceived depth of modulation be proportional to the amount of error? Should the mod-

ulation only be from the plane of the screen towards the pilot or should it also modulate from the

plane of the screen away from the pilot?

Other uses of stereo 3-D also are possible. The "natural" use of stereo 3-D is to represent

the 3-D geography. Part of the true test of the technology will be to go beyond that approach and

determine if there are more effective applications.
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Figure 1.- Monocular "monorail" display.

Figure 2.- Monocular "signpost" display.
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Figure 3.- Stereo display as seen on a conventional CRT.

(a) (b)

Figure 4.- Generation of stereo pairs by eye rotation (a); generation of pairs by sheafing the view-

ing pyramid (b).
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(a) (b) (c)

Figure 5.- Evolution of own-ship symbol: Stereo pairs for (a) and (b) would not visually fuse;
(c) would visually fuse.
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INTRODUCTION

Computational and empirical analyses of optical flow have led to a more complete under-
standing of pilot control tasks. Such analyses are based on the premise that a primary stimulus for

the perception of self-motion is the flow of optical texture in the visual field (Gibson, 1950;
Koenderink and van Doom, 1976). It has been further recognized that there are both local and

global optical variables that might influence control behavior (Owen and Warren, 1982; Uttal,

1985). With this realization came the understanding that to study how optical flow influences con-
trol tasks, it is essential that the complex visual scene be decomposed into observable flow patterns

(Regan and Beverly, 1985).

One approach used to better understand the impact of visual flow on control tasks has been to

use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a

grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of
the flow information that exists in the real world. The danger is that the resulting optical motions

may not generate the visual flow patterns useful for actual flight control.

We have conducted a series of studies directed at understanding the characteristics of syn-

thetic perspective flow that support various pilot tasks. In the first of these, we examined the con-
trol of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies

has been directed at studying the head tracking of targets moving in a three-dimensional coordinate

system. These studies, parametric in nature, have utilized both impoverished and complex virtual

worlds represented by simple perspective grids at one extreme, and computer-generated terrain at
the other.

These studies are part of an applied visual research program directed at understanding the

design principles required for the development of instruments displaying spatial orientation infor-
marion. The experiments also highlight the need for modeling the impact of spatial displays on

pilot control tasks.
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ALT_UDE CONTROL

Introduction

Thepurposeof this experiment was to examine the characteristics of "wire frame" perspec-

tive grids as support for altitude control. Wolpert, Owen, and Warren (1983) reported that splay

angle information was one of the most important indicants of altitude change. In their study, they

used ground surface textures consisting of equally spaced lines either parallel to the direction of

travel (meridian texture), orthogonal to the direction of travel (latitudinal texture), or both (square

texture).

There are two limitations of Wolpert's work that have relevance to the current study. The

fast is that discrete-trial, passive-response methodology was used. This is in contrast with a set-

ring where a person is required to continuously monitor a perspective scene, and where his or her

responses result in feedback control of perspective dimensions of the stimulus.

The second limitation derives from the fact that subjects could have monitored the location at

which any meridian texture line intersected the bottom edge of the screen. As a result, a subject
could tell if altitude had changed by merely observing the movement and intersection without mon-

itoring the splay angle at all.

Methods

Subjects were flown at a constant velocity, at three different altitudes, over each of the three

grid types mentioned above. The display was generated by an Evans and Sutherland PS-2 graph-

ics system. The "aircraft" was buffeted by both lateral and vertical winds. Each of the distur-
bances was defined by its own sum of 13 sine waves. The five subjects were required to maintain

a constant height above the grid by means of a joy stick. The primary performance metric was

adjusted root mean square error (ARMSE) from the assigned altitude.

The important point here is that because of the lateral noise imposed on the craft position, the
meridian lines moved left and right irrespective of the actual change in altitude. As a result, sub-

jects could not determine altitude change by only the movement of the meridian lines. Changes in
altitude would have to be determined by changes in density (lower density corresponds to a lower

altitude) and splay angles (the greater the angle the lower the altitude) of the grid structure.

Results and Discussion

Based on the work previously cited, it was expected that ARMSE sould be lowest for the

meridian surface and highest for the latitude surface. This was not the case (fig. 1).

Because of the unexpected larger ARMSE values obtained when flying over the meridian

surface texture, it was decided to look more critically at a single subject's performance. A detailed

power frequency analysis was performed and showed that the meridian grid resulted in (1) less

stick power associated with the vertical disturbance than any of the other grid textures; and (2) the

most power in the stick movement associated with the lateral input signal (fig. 2).
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Theseanalysesindicatethatthesubject(1)waslessreactiveto the informationspecifying
truechangesin altitudewhenflying overthemeridiantexture;and(2) tendedto confuselateral
with verticalmotionin displayswhereonly splayinformationwasavailable.

PERSPECTIVE FLOW FIELDS AND HEAD TRACKING IN A 3-D VIRTUAL
WORLD

Introduction

In the previous study, we discussed the impact of perspective flow displays on a manual
control task that regulated the altitude of a simulated aircraft. In certain military rotorcraft, systems
exist in which movement of a sensor system is slewed to the crewmember's head motion. Cur-

rently there is only standard flight symbology in this helmet-mounted display to indicate altitude,
attitude, and heading. A small portion of the display provides information concerning the field of

view and field of regard of the sensor.

Despite the fact that these systems are currently fielded, little systematic data exist concerning

how a pilot uses flight/target information presented on a helmet-mounted display. Even less data
are available on alternative display configurations that might make a pilot more sensitive to changes

in aircraft state.

As part of a program to better understand helmet-mounted flight displays, we conducted a
study to validate a laboratory simulation of the currently fielded system. A perspective flow field
was used to create the virtual world that was the basis for this simulation. A detailed report of this

study is in preparation.

Methods

A wire-frame perspective grid was displayed to six subjects by means of a head-mounted

1 in. Sony electronic view finder. Head position was monitored by means of a Polhemus head
tracker. As the subjects moved their heads, they were able to "look" around the virtual world.

Six subjects were "flown" over the grid at two different altitudes and three different veloci-
ties. Positioned on the surface was a wire frame cube. The target was offset to the left or fight of

the direction of travel. The subject could "track" the target by means of a cross hair that was gen-

erated in the middle of the monocular display. Tracking ARMSE was determined by subtracting

line of sight (LOS) to target from the visual LOS.

Results and Discussion

Figure 3 shows the mean screen errors for the different offsets, as a function of slant angle to

the target. The term slant angle incorporates elevation and azimuth components. It is important to

remember here that as range to the target decreases, optical (apparent) velocity increases. So,

during the course of the "flight," the target was in fact accelerating, even though "aircraft" speed
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wasconstantthroughoutthe flight. A 3x4x2 (speed x offset x altitude) repeated-measures

analysis of variance was conducted on the mean ARMSE values for each subject. This analysis
indicated that as optical velocity increased, there was a significant increase in screen error

(p < 0.001). This was true irrespective of whether the increase in optical velocity was produced

by changes in slant range or "vehicle" speed.

In figure 4 is shown the change in both ground error and screen error as a function of slant

angle. To calculate ground error, the target and visual LOSs were first projected to the ground

plane. Ground error was then given as the distance between those two intersections. As slant

angle increased, ground error did not significantly change (p > 0.46). One interpretation of these

data is that the subjects were treating the task as a true three-dimensional LOS problem. If the

subjects had maintained screen error constant (as in an arcade game), ground error would have
directly varied with slant range. A second interpretation is that subjects tried to maintain a constant

screen error, but were unable to do so because of the accelerating optical velocity of the target.

HEAD TRACKING DURING SIMULATED AUTOMATED AND MANUAL

HELICOPTER FLIGHT

Introduction

A model of head tracking in a 3-D world (represented by a perspective flow field) was devel-

oped and tested in the previous study. The purpose of the present experiment was to (1) validate
the laboratory simulation, and (2) model the trade-offs that pilots make when they are required to

control their craft and simultaneously head-track targets. A detailed report of this study is in

preparation.

Methods

Six AH-64 Apache helicopter pilots took part in a simulation of the pilot night-vision system

(PNVS). The study took place in a fixed-base mock-up of the helicopter. The visual scene was a

complex, computer-generated world in which a stationary helicopter served as the target. Each

pilot was initially flown "automatically" in either a rectilinear or curvilinear path past the target.

This served to simulate a copilot/gunner or a pilot in an automated flight mode. The pilot was then

required to duplicate the ground track in manual flight mode while simultaneously tracking the tar-

get. The spread of target ranges extended from approximately 6,000 to 400 ft. In the trials

reported here, own-ship velocities never exceeded 80 mph.

Head-tracking ARMSE was calculated as in the previous study. Ground-track error was also

measured. This was the difference in feet between the flightpaths in the automated versus manual

flight modes. During the manual flights, pilots were informed that target tracking was the primary

task, but that ground track error was being measured.
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Results and Discussion

Figure 5a shows the averaged screen errors in the manual and automatic flight modes, as a
function of slant angle. A repeated-measures analysis of variance revealed a significant effect of

slant angle (p < 0.005) as well as significant slant angle by flight mode interaction (p < 0.001).

The inference is that screen error is greater near the end of a manual flight than it is at the end of an

automatic flight.

At fast glance this makes a great deal of intuitive sense. During manual flight, the pilot is not

only head-tracking a target, but also manually flying the helicopter. However, inspection of fig-

ure 5b reveals another explanation of the increased screen error. As can be seen, optical velocities

during the manual flight mode are significantly greater than during automated flight. Additionally,

a multivariate regression revealed a significant positive correlation (p < 0.0001) between optical
velocity and screen error, when the effect of slant angle is statistically removed. This analysis is

consistent with the interpretation that optical velocity is a major source of head-tracking error.

An interesting question that arises from these data is why optical velocities are greater during

manual flight. Presumably, given that the pilot is under control of the craft, he or she could have

biased the flightpath to decrease optical velocity, and, hence, screen error.

Figure 5c provides some understanding of the complex trade-offs that the pilots were mak-

ing. This figure shows that as slant angle increased (and slant range decreased), the magnitude of

the ground error decreased significantly (p < 0.005), then gradually increased. As with the second

experiment, the data reported here are consistent with the interpretation that the pilots were treating

the task as a true 3-D problem. Otherwise, there would have been no reason why they would not

have simply held screen error constant and allowed ground error to vary. Also, although they flew

a flightpath that increased the problem of head tracking (by increasing optical velocity), their man-

ual flightpath resulted in, if not a constant, at least a minimal ground error. This, of course, is the

name of the game for a combat pilot.

GENERAL DISCUSSION

Pilot control tasks include both manual flight control and the control of head-slaved sensor

systems. Three studies were presented to highlight the nature of the design considerations that are

important in the development of displays that convey spatial orientation information. Factors

emphasized included the need to characterize both optical/visual flow fields and the control

dynamics of manual and head-slaved systems.
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SUMMARY

"Motion sickness" is the general term describing a group of common nausea syndromes

originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferent,
or overstimulation of the vestibular organs of the inner ear. Sea-, car-, and airsickness are the

most commonly experienced examples. However, the discovery of other variants such as Cin-

erama-, flight simulator-, spectacle-, and space sickness in which the physical motion of the head

and body is normal or absent has led to a succession of "sensory conflict" theories which offer a

more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that

neural and/or humoral signals originate in regions of the brain subserving spatial orientation, and

that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately,

our present understanding of the neurophysiological basis of motion sickness is far from complete.

No sensory conflict neuron or process has yet been physiologically identified. To what extent can

the existing theory be reconciled with current knowledge of the physiology and pharmacology of
nausea and vomiting? This paper reviews the stimuli which cause sickness, synthesizes a

contemporary Observer Theory view of the Sensory Conflict hypothesis, and presents a revised
model for the dynamic coupling between the putative conflict signals and nausea magnitude esti-

mates. The use of quantitative models for sensory conflict offers a possible new approach to

improving the design of visual and motion systems for flight simulators and other "virtual envi-

ronment" display systems.

STIMULI CAUSING MOTION SICKNESS: EXOGENOUS MOTION
AND "SENSORY REARRANGEMENT"

Motion sickness is a syndrome characterized in humans by signs such as vomiting and

retching, pallor, cold sweating, yawning, belching, flatulence, decreased gastric tonus; and by

symptoms such as stomach discomfort, nausea, headache, feeling of warmth, and drowsiness. It

has a significant incidence in civil and military transportation, and is a common consequence of

vestibular disease. Virtually everyone is susceptible to some degree, provided the stimulus is

appropriate and lasts long enough. Many other animal species also exhibit susceptibility.

A century ago, physicians commonly attributed motion sickness to acceleration-induced
cerebral ischemia, or to mechanical stimulation of abdominal afferents (Reason and Brand, 1975).

These theories were largely discounted when the role of the inner ear vestibular organs in body

movement control was appreciated, and when James (1882) noted that individuals who lack
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vestibularfunction were apparently immune. As a result, it was commonly thought that motion

sickness results simply from vestibular overstimulation.

Certainly the most common physical stimulus for motion sickness is exogenous (i.e., non-

volitional) motion, particularly at low frequencies. However, when individuals are able to

(motorically) anticipate incoming sensory cues, motion stimuli are relatively benign. For example,
drivers of cars and pilots of aircraft are usually not susceptible to motion sickness, even though

they experience the same motion as their passengers. In daily life, we all run, jump, and dance.

Such endogenous (volitional) motions never make us sick. Thus, it is now recognized that motion

sickness cannot not result simply from vestibular overstimulation.

Many forms of motion sickness consistently occur when people are exposed to conditions of

"sensory rearrangement"mwhen the rules which define the normal relationship between body

movements and the resulting neural inflow to the central nervous system have been systematically

changed (Reason, 1978). Whenever the central nervous system receives sensory information con-
ccrningtheorientationand movement of thebody which isunexpected or unfamiliarinthecontext

of motor intentionsand previoussensory-motorexperience---andthisconditionoccursforlong

enough---motion sicknesstypicallyresults.Thus, sicknessoccurswhen a person moves about

while wearing a new pairof glasses(spectaclesickness)or when a subjectinlaboratoryexperi-

mcnts walks around wearing goggles which cause left-rightor up-down rcvcrscvision.Similarly,

sickness is also encountered in flight simulators equipped with compelling visual displays

(simulator sickness) and in wide-screen movie theaters (Cinerama sickness), since visual cues to

motion are not matched by the usual pattern of vestibular and proprioceptive cues to body accelera-

tion. Space sickness among astronauts is believed to result in part because the sensory cues pro-
vided by the inner ear otolith organs in weightlessness do not correspond to those experienced on

Earth. Astronauts also commonly experience visual spatial reorientation episodes which are

provocative. When one floats in an inverted position in the spacecraft, a true ceiling can seem
somehow like a floor. Visual cues to static orientation can be ambiguous, often because of sym-

metries inherent in the visual scene. Cognitive reinterpretation of ambiguous visual orientation

cues results in a sudden change in perceived orientation, which astronauts have found can be nau-
seogenic (Oman, 1988). These various forms of sickness illustrate that the actual stimulus for

sickness cannot always be adequately quantified simply by quantifying the physical stimulus. The

trigger for sickness is a signal inside the central nervous system (CNS) which also depends on the

subject's previous sensory motor experience.

PHYSIOLOGICAL BASIS OF MOTION SICKNESS

Despite the ubiquity of motion sickness in modern society and significant research (well
reviewed, collectively, by Tyler and Bard, 1949; Chinn and Smith, 1955; Money, 1970; Reason

and Brand, 1975; Graybiel, 1975; and Miller, 1988), the physiological mechanisms underlying

motion sickness remain poorly defined. Classic studies of canine susceptibility to swing sickness

(Wang and Chinn, 1956; Bard et al. 1947) indicated that the cerebellar nodulus and uvulampor-

tions of the central vestibular system---are required for susceptibility. Many neurons in the central

vestibular system which subserve postural and oculomotor control are now known to respond to a

variety of spatial orientation cues, as reviewed by Henn et al. (1980). A brain stem vomiting

center was identified by Wang and Borison (1950) and Wang and Chinn (1954), which initiates

emesis in dogs in response to various stimuli, including motion. Nausea sensation in humans is
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commonlyassumedto beassociatedwith activity in thevomitingcenter(Money,1970).The
integrityof anadjacentchemoreceptivetriggerzone(CTZ),localizedin areapostremaon thefloor
of thefourthventricle,wasalsobelievedto berequiredfor motionsickness(WangandChinn,
1954;BrizzeeandNeal, 1954).It wasgenerallyassumedthatsignalsoriginatingsomewherein
thecentralvestibularsystemsomehowtraverseto thechemoreceptivetriggerzone,which in turn
activatesthevomitingcenter.WangandChinn(1953)andCramptonandDaunton(1983)have
foundevidencesuggestiveof apossiblehumoralagentin cerebrospinalfluid (CSF)transported
betweenthethird andfourthventricle. However,anemeticlinkagevia CSFtransportdoesnot
easilyaccountfor theveryshortlatencyvomitingwhich is occasionallyobservedexperimentally.
Thevomitingcenterreceivesconvergentinputsfrom avarietyof othercentralandperipheral
sources,includingthediencephalonandgastrointestinaltract. Thepossibilityof multipleemetic
pathwaysandsignificantinterspeciesdifferencesin mechanismmustbeconsidered.Also,more
recentexperimentshaveledworkersto questionthenotionthatmedullaryemeticcentersaredis-
cretelylocalizable.Attemptsto verify theearlierfindingsby demonstratingmotionsickness
immunityin areapostremaablatedandcerebellarnodulectomizedanduvulectomizedanimalshave
notbeensuccessful(Miller andWilson,1983a,b;BorisonandBorison,1986;Wilpizeski, Lowry,
andGoldman,1986).

Theactof emesisitself involvesthesomaticmusculature.However,manyothersignsof
motion sicknessaslistedearlierandassociatedwith vasomotor,gastric,andrespiratoryfunction
suggestthatareasin thereticularcoreof thebrainstemandlimbic system,whichareassociated
with autonomicregulationaxealsocoactivated.Thelimbic systemandassociatedhypothalamus-
pituitary-adrenalcortex(H-P-A) neuroendocrineoutflow pathwayis involved. Increasesin
circulatinglevelsof suchstress-relatedhormonesasepinepherineandnorepinepherine,ADH,
ACTH, cortisol, growthhormone,andprolactinhavebeenfoundduring sickness(e.g.,
Eversmannet al., 1978;LaRochelleet al., 1982).Whetherthelimbic systemandH-P-A axis
simplymediatea generalizedstressresponse,or arealsoinvolvedin motion-sicknessadaptationby
somehowtriggeringstimulus-specificsensory/motorlearningis unknown.Thequestionof thesite
of actionof antimotion-sicknessdrugsis alsofar from resolved.Thereis nosubstantialevidence
thateffectivedrugsacton thevestibularendorgans.Theirprimaryeffectisprobablysimplyto
raisethethresholdfor sickness.Antimotion-sicknessdrugscouldbeactingonbrain-stememetic
centers.Alternatively,theymay shift thefundamentalandrenergic-cholinergicbalancein thelim-
bic system(e.g.,Janowskyet al., 1984).

DEVELOPMENT OF THE SENSORY CONFLICT THEORY

Although our physiological understanding of motion sickness is thus incomplete, analyses of
the wide variety of physical stimuli which produce the same syndrome of symptoms and signs and

the dynamic pattern of these responses have nonetheless given us some insight concerning possible

etiologic mechanisms. Recognition that motion sickness could occur not only under exogenous
motion stimulation, but also as a result of sensory rearrangement, as defined above, has led to the

development of a succession of sensory conflict theories for the disorder.

The sensory conflict hypothesis for motion sickness was originally proposed by Claremont
(1931), and has since been revised and extended by several authors. Implicit is the idea that a

neural or humoral sensory conflict-related signal originates somewhere in the brain and somehow

couples to brain centers mediating sickness symptoms. In early statements of the theory, conflict
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signalswere assumed to somehow result from a direct comparison of signals provided by different

sensory modalities (e.g., "the signals from the eye and ear do not agree"; canal-otolith, and visual-
inertial conflicts). However, Reason (1978) emphasized that a direct intermodality comparison of

afferent signals is simply not appropriate, because signals from the various sense organs have dif-
ferent "normal" behavior (in terms of dynamic response and coding type), and whether they can be

said to conflict or not actually depends upon context and previous sensory-motor experience.
Hence the conflict is more likely between actual and anticipated sensory signals. Extrapolating

from earlier interrelated work by von Holst and Held, Reason argued that the brain probably

evaluates incoming sensory signals for consistency using an "efference copy" based scheme. As
motor actions are commanded, the brain is postulated to continuously predict the corresponding

sensory inputs, based on a neural store (memory bank or dictionary) of paired sensory and motor

memory traces learned from previous experience interacting with the physical environment. Sen-

sory conflict signals result from a continuing comparison between actual sensory input and this

retrieved sensory memory trace. Any situation which changed the rules relating motor outflow to

sensory return (sensory rearrangement, a term coined by Held) would therefore be expected to

produce prolonged sensory conflict and result in motion sickness. Adaptation to sensory rear-

rangement was hypothesized to involve updating of the neural store with new sensory and motor
memory-trace pairs. Reason proposed a formal Neural Mismatch model which incorporated these

concepts. However, the model was only qualitative, making simulation and quantitative prediction

beyond its reach. Key structural elements such as the Neural Store and memory traces were only
intuitively defined. The model did not really address the question of why the CNS should have to

compute a sensory conflict signal, other than to make one sick. Reason's model dealt with sensory
conflict only and did not incorporate emetic brain output pathway elements which must be present

to account for the latency and order of appearance of specific symptoms.

A MATHEMATICAL DEFINITION OF SENSORY CONFLICT

In order to address these difficulties, the author proposed a model for motion sickness

(Oman, 1978; 1982) in a mathematical form, shown in block diagram format in figures 1-3. This
new model contained a statement of the conflict theory which was congruent with Reason's view,

and also the emetic linkage output pathway dynamics missing from Reason's model. The conflict

theory portion of the model was formally developed by application of Observer Theory concepts
from control engineering to the neural information processing task faced by the CNS in actively

controlling body movement using a limited set of noisy sensory signals. The conflict model for-
mulation can be considered an extension of the optimal control model in the field of Manual Con-

trol (Baron and Kleinman, 1968) and in the field of spatial orientation research, an extension of

Kalman filter models (Young, 1970; Borah, Young, and Curry,1978). The latter have been used

to predict orientation perception in passive observers with some success. In these previous mod-
els, however, sensory conflict was not defined in the same sense as that used by Reason and me.

In the guidance, control, and navigation systems, engineers are often faced with the problem
of controlling a vehicle's state vector (e.g., angular and linear position, velocity, and acceleration)
when information from sensors which measure these states is noisy or is even not directly mea-

sured at all. To deal with this problem, engineers now routinely incorporate into the control sys-

tem design a computational element known as an "observer," whose function is to provide an

optimal estimate of the actual states of the vehicle (or other system) being controlled. Control

loops are closed using the state estimate provided by the observer in lieu of direct feedback sensor
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measurementsin thetraditionalway. Analytical techniqueshavebeendeveloped(Kalman,1960;
Wonham,1968)for mathematicallylinearsystemswhichallowdesignersto chooseobserverand
control-loopparameterssothattheobserverstateestimateis alwaysconvergingwith reality,and
whichoptimizestheclosed-loopperformanceof theentiresystem.In controlengineeringpar-
lance,suchsystemsareformallycalled"outputfeedback"optimal-controlsystems.

Of particularimportancein thepresentcontextis thewayin whichtheobserverstateestimate
is calculatedin theseengineeringsystems.Theobservercontainsaninternaldynamicmodelof the
controlledsystemandof thesensorsbeingused.Theobserverelementusesthesemodelsto cal-
culatewhattheavailablefeedbacksensormeasurementsshouldbe,assumingthevehiclestate
estimateof theobserveris correct.Thedifferencebetweentheexpectedandtheactualfeedback
measurementsis thencomputed,becauseit is anindirectmeasureof theerrorin theobserverstate
estimate.Thedifferencesignalsplayanimportantrole in theobserver.Theyareusedto continu-
ouslysteertheobservervehiclestateestimatetowardreality,usingamethoddescribedin more
detailbelow.

Thereis adirectanalogybetweenthe"expected"feedbacksensormeasurementand"internal
dynamicmodel"conceptsin controlengineeringObserverTheory,andthe"efferencecopy" and
"neuralstore"conceptswhich haveemergedin physiologyandpsychology.Fromtheperspective
of controlengineering,the"orientation"brainmust"know" thenaturalbehaviorof thebody,i.e.,
haveaninternalmodelof thedynamicsof thebody,andmaintainacontinuousestimateof thespa-
tial orientationof all of its parts. Incomingsensoryinputswouldbeevaluatedby subtractionof an
efferencecopysignal,andtheresultingsensoryconflict signalusedto maintainacorrectspatial
orientationestimate.

Themathematicalmodelfor sensoryconflict andmovementcontrolin theorientationbrainis
shownschematicallyin figure2, andmathematicallyin figure3. (Arrowsin thediagramsrepre-
sentvectorquantities.Forexample,theactualstateof thebodymightconsistof theangularand/or
lineardisplacementof all thepartsof thebody,andhigherderivatives.)Themodel functioncanbe
summarizedasfollows: the internalCNSmodelsarerepresentedby differentialequations
describingbodyandsenseorgandynamics.Basedonknowledgeof currentmusclecommands,
theinternalmodelequationsderiveanestimatedorientationstatevector,whichis usedto determine
newmusclecommandsbasedoncontrolstrategyrules. Simultaneously,theestimatedorientation
stateis usedby theCNSsenseorganmodelto computeanefferencecopy"vector. If the internal
modelsarecorrect,andtherearenoexogenousmotiondisturbances,theefferencecopyvector
nearlycancelspolysensoryafference.If not,thedifference--thesensory-conflictvector is used
to steerthemodelpredictionstowardreality,to triggercorrectivemusclecommands,andto indi-
catea needfor reidentificationof theinternalmodeldifferentialequationsandsteeringfactors.

How a sensoryconflict vectormightbeusedtocorrectinternalmodelpredictionsis shown
explicitly in figure 3. Here,thephysicalbodyandsenseorgandynamiccharacteristicsare
expressedin linearizedstatevariablenotationasasetof matrixequationsof theform:
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1) i:=Ax+Bu

2) a = Sx + n,

3) u=m+n,

The coefficients of the state differential equations for body and sense organ characteristics are

thus embodied in the matrices A, B, and S. These equations are shown graphically in the upper

half of figure 3. The internal CNS dynamic model is represented by an analagous state differential

equation using hatted variables in the bottom half of the figure. This state estimator (the observer)

with its matrices A, B, and S corresponds to the Neural Store of Reason's (1978) model. The

sensory conflict vector c is obtained by subtracting actual sensory input a from expected sensory

input S _. Sensory conflict normally originates only from exogenous motion cue inputs n_.e,and
noise fla. The conflict vector is multiplied by a matrix K calculated using an optimization tech-

nique defined by Kalman and Bucy (1961) which lightly weights noisy modalities. When the
result is added to the derivative of the estimated state, the estimated state vector is driven toward the

actual state, and the component of the conflict vector magnitude due to noise is reduced. However,
when exogenous motion cues inputs n_e are present, or under conditions of sensory rearrange-

merit, such that matrices A, B, and/or S are changed, and no longer correspond to the matrices of

the internal model, actual sensory input it will be large, and will not be cancelled by the efference
copy vector. Sensory-motor learning takes place via reidentification by analysis of the new rela-

ionship between muscle commands and polysensory afference (reidentification of _ B, and S),

and internal model updating. Additional details are available in Oman (1982).

This model for sensory conflict overcomes many of the limitations of Reason's Mismatch
approach outlined earlier. The Neural Store is replaced by an internal mathematical dynamic

model, so that efference copy and sensory conflict signals are quantitatively defined. Increased

sensory conflict is noted to result not only from sensory rearrangement, but also from exogenous
disturbance forces acting on the body. The role of active movement in creating motion sickness in

some circumstances, and in alleviating them in others is clarified.

A REVISED MODEL FOR SYMPTOM DYNAMICS

The author's 1982 motion-sickness model included dynamic elements in the path between

sensory conflict and overall discomfort and nausea in motion sickness. This model has since been
altered in some important details; the current version is shown in figures 4 and 5.

The input to the model is a sensory conflict vector. Because of the bandwidth requirements

imposed on signals involved in orientation perception and posture control, it seems likely that the

components of the conflict vector are neurally coded. In the nausea model, the various conflict
vector components (describing the visual, vestibular, proprioceptive modalities) are rectified, and

then weighted and added together. Rectification is required because sensory conflict components,
as Reason and I have def'med them, are signed quantifies. The information carried in the sign is
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presumably useful in correcting orientation perception and posture control errors. However, stim-

uli which presumably produce sensory conflicts of opposite signs produce the same type and

intensity of nausea, as far as we can tell. Hence rectification is appropriate here. In weighting the
various conflict components, vestibular conflicts (i.e., semicircular canal and otolith modalities)

must be weighted relatively heavily in the model, since people without vestibular function seem to

be functionally immune. Visual motion inputs (as in Cinerama and simulator sickness) may thus
exert their major sick-making effects indirectly: Visual inputs would create illusory movement and

thus expected vestibular signals, so sensory conflicts would be produced in the heavily weighted
vestibular modality. However, to be consistent with our experimental evidence that visual and

proprioceptive conflicts under prism goggle sensory rearrangement (Oman, 1987; Eagon, 1988)

eventually become provocative while writing or when building can structures on a desktop, absent
concomitant head motion or vestibular conflict, visual and proprioceptive modality model weight-

ing factors are not zero.

As shown in figures 4 and 5, rectified, weighted conflict signals then pass along two paral-

lel, interacting dynamic pathways (fast and slow paths) before reaching a threshold/power law

element and resulting in a nausea-magnitude estimate model output. Magnitude estimates are

assumed to be governed by a power law relationship (Stevens, 1957) with an exponent of about 2.

Susceptibility to motion sickness is determined in the model not only by the amount of sensory

conflict produced, but also by the fast and slow pathway gains, time constants, and the nausea

threshold. The transfer of a generalized adaptation from one different nauseogenic stimulus situa-

tion to another might result from adaptation in these output pathways.

The parallel arrangement of the fast and slow pathways and their relationship to the threshold
element requires some explanation. In the past, many authors have therefore assumed that sensory

conflict coupling to symptom pathways is a temporary (facultative) phenomenon. However, I

have argued (Oman, 1982) that some level of subliminal sensory conflict coupling must be present

in normal daily life because conflict signals seem to be continuously functionally averaged at sub-

liminal levels, probably by the same mechanisms or processes which determine the intrinsic

dynamics (latency, avalanching tendency, recovery time, etc.) of symptoms and signs when con-

flict exceeds normal levels. The output pathways probably consist functionally of dynamic ele-

ments followed by a threshold, and not the reverse, as would be the case if the linkage were

temporary.

In the model, information flows along two paths prior to reaching the threshold. Both paths

incorporate dynamic blocks which act to continuously accumulate (i.e., low pass filter or "leaky"

integrate) the weighted, rectified conflict signal. One block (the fast path) has a relatively short
characteristic response time, and the other (the slow path) has a relatively long one. (In the model

simulations shown in the insets of figure 5, the fast path is a second low-pass filter with l-rain

time constants; the slow path is a similar filter with 10-min time constants. Second-order or higher

block dynamics are required so that model predictions show characteristic overshoot when the
conflict stimulus is turned off.) The slow path block normally has a higher gain (by a factor of

about 5) than the fast path, and at the beginning of stimulation is functionally the more important
element. Slow path output acts together with other classes of fast-acting nauseogenic inputs (e.g.,

vagal afference from the gut, or emetic drug stimulation) to bias the threshold of nausea response.

In the present model, the slow path block output also acts as a multiplicative factor on fast path

response gain. When prolonged stimulation has raised the slow path output, the response of the

fast path becomes much larger, as shown in the figure 5 simulation. Thus, the revised model

mimics the much magnified response to incremental stimulation which we observe experimentally
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in long-durationsickness.(In the1982versionof thismodel,increasedresponsesensitivityat
high symptomlevelswasaconsequenceonly of thetime-invariant,power-law,magnitude-
estimationcharacteristicattheoutputof themodel. Thisearliermodelfailedto adequatelysimulate
therapidriseandfall of sensationat highsicknesslevels).

Physically,thefastandslowdynamicelementsin themodelcouldcorrespondto physiologi-
calmechanismsresponsiblefor conveyingconflict-relatedinformationfrom theorientationbrainto
theemeticbrain. Sinceconflict signalsmustberectified,andthedynamicsof thefastandslow
pathwaysarequalitativelythoseof a leakyintegrationprocess,it is temptingto think thatatleast
theslowdynamicsmight involveahumoralmediatorand/orasecondmessengeragent.Alterna-
tively, thedynamicsmight reflecttheactionof somediffusionor activetransportprocess,or
insteadbetheintrinsicdynamicsexhibitedby anetworkof vomitingcenterneuronsto directneural
or humoralconflict signalstimulation.

CONCLUSIONS

Over the past decade, the sensory conflict theory for motion sickness has become the gener-

ally accepted explanation for motion sickness, because it provides a comprehensive etiologic per-

spective of the disorder across the variety of its known forms. Motion sickness is now defined as

a syndrome of symptoms and signs occurring under conditions of real or apparent motion creating

sensory conflict. Symptoms and signs (e.g., nausea, vomiting) are not pathognomonic of the

motion sickness syndrome unless conditions of sensory conflict are also judged to be present,
since the same symptoms and signs also occur in many other nausea related conditions. Thus, the

definition of sensory conflict is implicit in any formal definition of the syndrome. It is essential to

define as precisely as possible what is meant by the term sensory conflict. Mathematical models

for sensory conflict have sharpened our definitions considerably.

The models presented here capture many of the known characteristics of motion sickness in

semi-quantitative fashion. However, they have certain limitations, e.g., the sensory conflict model
posits a mathematically linear observer. Although recent experimental data are consistent with the
notion that the CNS functions as an observer, there is some evidence that sensory conflict is

evaluated in nonlinear ways. Also, the model can only mimic, but not predict, the adaptation pro-

cess. The model for symptom dynamics does not (yet) incorporate elements which account for

observed autogenous waves of nausea at high symptom levels, nor the "dumping" of the fast and

slow process pathways when emesis occurs. Models for response pathways mediating other

physiologic responses such as pallor, skin temperature, and EGG changes have not yet been

attempted.

Do the sensory conflict pathways postulated in the models really exist? Unfortunately, to
date no such sensory conflict neuron has been found which satisfies the functional criteria imposed

by the current theory. The strongest evidence for the existence of a neural or humoral entity which

codes sensory conflict is the ability of the conflict theory to account for and predict the many dif-

ferent known forms of motion sickness. One possibility is that conflict pathways or processes do

not exist, but in view of the strong circumstantial evidence, this seems unlikely. There are several

alternative explanations:
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1. Until recently, there has been surprisingly little discussion of exactly what one meant by

the term sensory conflict, so that a physiologist would be able to recognize a "conflict" neuron

experimentally. The availability of mathematical models has now changed this situation, and pro-
vided a formal definition. However, such models must be presented in ways which physiologists

can understand.

2. So far, relatively few animal experiments have been conducted with the specific objective

of identifying a conflict neuron. The search has been largely limited to the vestibulo-ocular path-

ways in the brain stem and cerebellum. Recent evidence suggests that cortex and limbic system are

major sites for spatial orientation information processing. Real progress may be limited until ori-
entation research focuses on these areas.

3. Although sensory conflict signals are arguably neurally coded, the conflict linkage mech-

anisms may have a significant humoral component. If so, a search for the emetic link using classi-
cal anatomical or microelectrode techniques will be unsuccessful.

Mathematical characterization of the dynamic characteristics of symptom pathways is a diffi-

cult black-box, system-identification problem. The model described above was based only on the

character of responses to exogenous motion and sensory rearrangements. Much can potentially be

learned from the study of dynamic responses to other classes of emetic inputs, and from studying

the influence of behavioral (e.g., biofeedback) and pharmacological therapies.

In other areas of systems physiology and psychology, mathematical models have proven

their value by providing a conceptual framework for understanding, for interpreting and interrelat-

ing the results of previous experiments, and for planning new ones. Mathematical models can
become a useful new tool in motion-sickness research. In the fields of flight simulation and virtual

environment displays, simulator sickness is an important practical problem. Models for sensory
conflict and motion sickness may become useful tools in the design of these systems.
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1. EFFECT OF ORIENTATION OF PERCEPTION OF FORM

It is well know that the orientation of an optical pattern relative to egocentric or extraneous ref-

erences affects its figural quality, that is, alters its perceived form and concomitantly delays or

quickens its identification (Rock 1973). A square presented in the frontal plane to an upright per-

son (S), for instance, changes from a "box" to a "diamond" when it is rotated with respect to the

S's median plane by 45". This angle, that is, the angle between the orientations of the pattern in

which the two apparent figures ("Gestalten") attain a summit of purity and distinctness, will be

called the "figural disparity" of the pattern. If, as in this case, the S is upright, the retinal meridian

and the subjective vertical (SV) are both in the viewer's median plane. The question arises with

respect to which of these orientation references the two figures are identified. The answer may be

found when the pattern and the S are oriented in such a way that the projections of the retinal

meridian and the SV into the plane of the pattern diverge by the pattern's figural disparity or its

periodic multiples; that is, in the case of a square by 45" or 135", respectively. Similarly, which

reference determines whether an equilateral triangle is seen as a "pyramid" or a "traffic warning

sign" may be revealed at a divergence of SV and retinal meridian of 60" or 180", respectively. It is

generally found that for head roll tilts (p) and figural disparities of up to 90 °, the figure whose axis

coincides with the SV is seen. At head tilts of p = 180", however, the retinal reference domi-

nates, as a rule independently of the figural disparity (for reviews, see Rock 1973 and Howard

1982).

2. EFFECT OF FORM ON PERCEPTION OF ORIENTATION

Clearly, then, orientation may determine apparent form. But conversely, form may also influ-

ence apparent orientation. This is explicitly true in the case of the SV (for review, see Bischof

1974; for the recent state, see Wenderoth 1976; Mittelstaedt 1986).

As shown in Fig. 1, our method is to project the pattern within a circular frame (of 16 °, 35 °, or

80" visual angle) into a tilted planetarium cupola (_ = 9.1 m) in 24 stationary orientations presented

to the S in a pseudo-random sequence. The S, lying on her side, indicates her SV by means of a

rotatable luminous line, which is projected onto the cupola such that its center of rotation coincides

with the center of the pattern's circular frame and the S's visual axis.

The effect of the pattern on the SV turns out to be a rather involved function of the orientation

of the pattern. This relation becomes clear, however, if we assume that the luminous line is even-

tuaUy oriented such that the effect of the pattern is opposite and equal to the nonvisual effect on the
SV, exerted mainly by the vestibular system. Both effects are then expected to be functions of the

difference between the angle [3 at which the luminous line is set with the pattern present and the

angle 13g at which it is found in the absence of visual cues. For the nonvisual effect, fortunately,
this function may be computed according to an extant theory (Mittelstaedt 1983a,b): the SV is

influenced not only by information about head flit, but also by intrinsic parameters which are inde-

pendent of head flit, notably the "idiotropic vector" (M). Presumably by addition of constant

endogeneous discharges to the saccular output, it leads to a perpetual shift of the SV into the
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directionof the S's long axis and hence causes the phenomenon which is well known as the Aubert

phenomenon. At first approximation, this relation may be represented by a vector diagram

(Fig. 2): In the absence of visual cues, the SV is perceived in the direction of the resultant R of

the otolithic vector G and the idiotropic vector M.

In our case, since p = 90 °, the nonvisual effect g becomes a particularly simple function

13- 13g, namely,

g =_G2+M 2 sin (_ - _g) = '_/G2 + M2 sin (_ - arccotan G)

= M sin _ - G cos

(1)

Because of the normalization of the vestibular information (which is inferred from effects of

centrifugation), g may be computed with G = 1 and M = cotan 13g. Hence the unknown visual

effect on the SV may be determined if the known quantity g is plotted as a function of the angle

on which effect of the pattern depends. There seem to be only two possible candidates: the angle

O between the pattern's main axis and the S's long axis, or the angle 13- ,3 between the former

and the present direction 13 of the SV.

Figure 3 shows plots of this latter function (named SV-function) engendered in three Ss by a

color slide of the house of Fig. 1. It turns out that the visual effect is zero, that is, does not change

the SV (13= 13g) if and only if 13- 0 is zero, rather than when 0 is zero. Hence its magnitude
must be a function of the former angle. We may envisage the SV as being at equilibrium between

two tendencies ("torques"), (1) the gravito-idiotropic torque g, trying to pull it toward

13- 13g = 0, (2) the other, the visual torque u, trying to pull it toward 13- O = 0 (see Fig. 2).
Generally, the visual torque exerted on the SV by a pattern turns out to be an antisymmetrical peri-

odic function composed of the sine of (13- O) and the sine of the angle's multiples. Hence it may

be simply and fully characterized by the amplitudes Vn of these sine components, to be called

"(circular) harmonics" of the respective SV function. With the picture of the house of Fig. 1 as

well as with other photographed scenes, the first circular harmonic is generally found to vary

greatly inter- as well as intrapersonnaUy. By contrast, the second and fourth harmonics vary but

moderately (within an order of magnitude) between Ss, and are rather constant intrapersonnally

for a given pattern. 1 The formal difference is supposed to be due to a difference in the underlying

information processing. The first harmonic expresses the effect of the picture's bottom-to-top

polarity, that is, of those cues for the vertical which may be inferred from its normal orientation to

gravity. The recognition of what is the top must probably be learned through personal experience,

and its effect is hence expected to vary with individual visual proficiency. The even-number har-

monics, by contrast, are presumably based on invariant structures of the visual system, possibly

by a weighting process, from the "simple cells" of the visual cortex (Mittelstaedt 1986).

This is highlighted by the following experimental series. If orthogonal lines are presented as a

pattern, the resulting SV-function contains only circular harmonics which are multiples of four.

1All circular harmonics higher than the fourth, except for the eighth, which is sometimes found to be just above
noise level, are insignificant or zero. With the sampling used, the amplitudes of the first four harmonics were about
the same irrespective of whether the Fourier analysis was made with the equidistant sampling of plots over 0 or
with the, necessarily, scattered sampling of plots over 13- O as in Fig. 3.
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The fourth usually is then the largest and is positive; that is, at its null-crossings with positive slope

the SV coincides (is in phase) with the direction of the lines (Fig. 4).

If a pictograph of a human figure is presented which consists of uniformly oriented lines

(Fig. 5; "star man") or random dashes, the first harmonic is in phase with star man's long axis and

hence is positive.

What will happen if the pictograph of a human figure is presented which consists, as in Fig. 6

("diamond man"), exclusively of lines that are oriented at 45* with respect to the figure's long axis?

As a matter of fact, the two figural components are superimposed: the first harmonic is in phase

and hence positive; the fourth is in counterphase and hence negative, neither "taking notice" of the

other (Fig. 7).

Evidently, the result falsifies the hypothesis (Bischof and Scheerer 1970) that the CNS first

computes a "resultant visual vertical" of the picture and subsequently forms an antisymmetrical

periodic function in phase with this resultant. For then, the resultant would either coincide with the

long axis of diamond man and hence the fourth harmonic would be positive, or (rather unlikely

though) the resultant would coincide with one of the line directions and hence the first harmonic

would be in phase with that line (or would be missing). Instead, the first harmonic results from a
processing which is determined by the bottom-to-top polarity of the picture independently of its

unpolarized axial features. At the same time, the even-number harmonics are determined by the

pattern's unpolarized axial features independently, at least with respect to phase, of its bottom-to-

top polarity.

3. INTERRELATIONS BETWEEN THE DETERMINANTS OF APPARENT

VERTICAL AND OF FORM PERCEPTION

It shall now be examined whether, by means of the comprehensive mathematical theory of the

SV, understanding the effect of perceived form on the SV may help in understanding the effect of

the SV on form perception mentioned earlier.

First, the theory does indeed offer a good reason why the influence of the SV on the perception

of form should decrease with an increasing tilt angle of the S. The effect of the otolithic output

than decreases (besides due to comparatively small deviations from a linear response to shear) as a

consequence of the addition of the idiotropic vector. Its amount is an idiosyncratic constant
averaging around 50% of that of G. The magnitude of the resultant R of the idiotropic vector M

and the gravity vector G may be approximated as

R ='_G 2 +M 2 + 2GMcos p (2)

Evidently, R must decrease with increasing angle of tilt p, and so will its relative influence when

competing with visual cues!

Second, the theory may open a way to assess the relative strength of the factors that influence

form perception. The influence of visual patterns on the SV is not independent of the angle of tilt

(Bischof and Scheerer 1970). This effect may be quantitatively described by weighting the visual

torque v with the sum of the squared saccular and utricular (roll) components (for details see
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Mittelstaedt1986).Hence the effect of the visual torque is maximal at a roll tilt between 60 and 90"

and declines toward the upright as well as toward the inverted posture. As a result, at small roll
tilts of the S, the nonvisual torque g may, under certain conditions, be larger than the visual

torque, about equal to the latter around p = 90", but much smaller than the visual torque when the

S is inverted (p = 180"). Which component will determine which form is perceived under which

angle of divergence may be predictable, if the relative weights of the nonvisual and visual compo-

nents in the determination of the SV would be correlated with the relative weights of the two refer-

ence systems in the perception of form.

4. SUPPRESSION OR ADDITIVE SUPERPOSITION

However, the underlying information-processing systems may be fundamentally different in
the two cases. Evidently, additive superposition suffices to explain the interaction of the compo-

nents in the case of the SV. But in their influence on form perception, a decision in case of conflict

appears to be called for, and hence to necessitate a nonlinear interaction in that one of the competi-

tors is suppressed.

This we have tested by using the well-known ambiguous figure of Fig. 8. It is seen, by an

upright S, as a "princess" P or a "witch" W when the long axis of P is aligned or reversed

with respect to the S's long axis.

If the S is tilted by 180" relative to gravity (p = 180") the retinalreference determines the per-

ception, as is generally found in comparable cases. The crucial situation arises when the S views

the figure while lying on the (p = 90"). In this position the figure was presented at various angles

with respect to the S's long axis, and the S was instructed to report whether the witch or the

princess appeared more distinctly. In order to determine the point of transition between the two

phenomena, their distinctness was scaled by the Ss in seven steps, which are condensed in Fig. 9

into five (exclusively P; preponderantly P; ambiguous; preponderantly W; exclusively W).

Two Ss, who were well versed in psychophysical tests were chosen. In addition their SV in

the absence of visual cues and their ocular counterroll at p = 90* were determined and were found
as shown in Fig. 9. Clearly, in both Ss, the midline between the transition zones neither coincides

with the SV nor with the retinal meridian, but assumes an intermediate direction between these

two. Hence even in their influence on form perception the gravito-idiotropic and the visual effects

may combine vectorially rather than suppress one another.

It is advisable, then, to reexamine those instances where an exclusive decision between the two

references is found. As mentioned earlier, this happens regularly, when S and pattern are placed

such that the SV and the retinal meridian diverge by the figural disparity angle. Now let the

"salience" s (die "PRAEGNANZ") of a figure (X) vary as a symmetrical periodic function of its

deviation from the respective reference such that

max max

Sx = Z Exn cos n O'x + _ Vxn cos n(13- O'x) (3)
n=0 n=0

where 0 is the angle between the figure's main axis and the retinal meridian, [Y is the angle

between the SV and the retinal meridian, and F-an', Vxn axe the amplitudes of the figure's circular
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harmonics weighted (as suggested in section 3) by the retinal CExn) and the SV reference systems

(Vxn), respectively. The central nervous correlate of the relative salience of figures X,Y may then

be determined by the difference Sx - Sy. In the case of princess versus witch, because

Ow = Op - 180 ° and if, for the sake of simplicity, nmax is assumed to be unity, the difference
becomes

Sp - Sw = _ + Vp0) - (Ew0 + Vw0) + (Epl + Ewl) cos Op + (Vpl + Vwl) cos (9'- Op) (4)

In the upright S (p = 0, [Y = 0), with Ep0 + Vp0 = Ew0 + Vw0, this becomes

Sp - Sw = (Epl + Ewl + Vpl + Vwl) cos Op (5)

t

That is, independently of the relative weights, the princess dominates at acute angle Op and the
!

witch dominants at obtuse angles Op However, with the S inverted (p = 180", 13'= 180°):

Sp - Sw = [(Epl + Ewl) - (Vpl + Vwl)] cos Op (6)

Consequently, the pattern is identified exclusively according to one of the two reference systems, if

their respective weighting factors differ and O _ 90", even though the assumed processing is

purely additive. The same holds for the other examples given above. In the case of the square, for

instance, with n = 4, and the S tilted until 13'--45* (p = 45"),

Sb(box) - Sd(diamond) = [(Eb4 + Ed4 ) - (Vb4 + Vd4)] cos 4_,_o (7)

This leads to a "decision" in favor of the SV-reference if--quite plausibly at that acute angle---the

V factors are then larger than the E factors, whereas at 9' = 135" (135" < p < 180") they appear

to be almost equal: in that position some of our Ss refused to decide about what they see! In the

case of princess versus witch with the S at p = 90* and 9 = 60*

Sp - Sw = (Epl + Ewl)COS Lqp + (Vpl + Vwl ) cos (60 ° - Op) (8)

Hence a compromise is to be expected depending on the relative magnitudes of the weighting fac-

tors. The relative salience (Sp- Sw) is then zero at O_p zero, and

+ sin 60 °
t

cotanOAp zer° = + ( Epl + Ewl)Vp 1 + Vw 1 + cos 60 °

(9)

as is borne out by the results here and in Fig. 9.

In conclusion, the present state favors the notion that angular relations are represented and pro-

cessed in the CNS by variables which are trigonometric functions of the respective angles. That

the characteristics and the spatial arrangement of the otolithic receptors and of the simple cells in the

visual cortex are well suited to implement this kind of coding (Mittelstaedt 1983a,b; 1986; 1988 in
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press)lends a neurophysiological backbone to the demonstrated descriptive and predictive powers

of such a theory.
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Figure 1.- Experimental setup for testing the effect of tilted images on the subjective vertical. The

image is projected in a sequence of static roll tilts onto a hemispherical (¢_= 9.1 m) screen in

front of the subject. The S, lying on her side, is asked to set a projected luminous line to sub-

jective vertical.
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Figure 2.- Definition of critical variables and their relations to hypothetical determinants of the SV:

1) It is supposed that the visual scene (here a house) exerts an attraction effect on the SV. This

"visual torque" is supposed to be a function of 13- O, the angle between the main axis of the

tilted image and the luminous line when set subjectively vertical; 2) This visual torque is

supposedly counterbalanced by a "gravito-idiotropic torque." The latter is a function of

13- 13g, the angle between the present SV and the 13g the SV would have in the absence of
visual cues. The latter function may be determined as

g =_/G2 + M 2 sin(13-13g)= 5/G2 + M 2 si_13- arccotan G) = M sin 13- G cos _

with G = 1. Hence the unknown visual torque may be quantitatively described. All angles

defined with respect to (long) Z-axis of head.
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TOM .19 .011 .036 .001 .293

Figure 3.- Effect of the same tilted scene (a house) on the SV of three Ss (MON, EVI, TOM).

The gravito-idiotropic torque -g is plotted as a function of ]3 - O (see Fig. 2). Crosses:

means of pairs of settings. Curves: least-square fits of summed sine functions

-g = _Vn sin n([3 - O) with amplitudes V1-4 to the data. Note the large variation of the

amplitude VI of the first harmonic in contrast to the moderate variation of V2 and V4.
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Figure 4.- Effect of pattern of squared luminous lines on SV. Method and evaluation as in

Figs. 1-3. Inset gives numerical values of amplitudes (sines and cosines) of fourth, eighth,

and twelfth harmonics of SV-function, their SD, and p (in %; two-tailed). Error means square
deviation of data from approximation.
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Figure 5.- Effect on SV of a figure which is composed of uniformly oriented luminous lines (star

man). Procedures as in Figs. 1-3; symbols as in Fig. 4. Note that only the first and the sec-

ond harmonic are significantly different from zero (two-tailed).
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Figure 6.- Effect on SV of a figure which is composed of oblique luminous lines (diamond man).

Note that the first and fourth harmonics are significantly (two-tailed) different from zero, but of

different sign; that is, exactly (no cosines!) in counterphase at 13- 0 = 0.
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Figure 7.- First and fourth harmonics of experiments of Figs. 5 and 6 and in nine Ss. Location of

arrowhead results from plotting sine amplitudes on ordinate and cosine amplitudes on abscissa

(for scale see 4% marks on fourth of RM). RM: diamond man of Fig. 6; SM: star man of

Fig. 5; NM figure in the shape of SM, but composed of randomly oriented dashes ("needle

man"). Ellipses: two-dimensional SD. Note similarity of 1. harmonics for all figures and in

all Ss except one (dot under arrowhead), who evinces a negative 1. harmonic, that is, sees the

polarity inverted. Furthermore, only RM engenders a significant fourth harmonic.
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Figure8.- Thewell-knownambiguousfigureappearingaswitchorprincessuponinversionof
long axis.

@

I._ _ _ ° _0';£ o- _\ t, _
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0 0

Figure 9.- To S lying on the side, the princess is presented in various static orientations.

Direction of long (upright) axis of princess with respect to S's long axis (Z) is shown as

direction of dot or triangle (like angle 0 in Fig. 2). Type of symbol represents judgement of

S on how the figure appears to her when presented in that direction. One symbol stands for

one presentation. More presentations were made in directions of critical transitions than in
those of complete salience (exclusive distinctness). The latter are connected by black (witch

exclusive) or grey (princess exclusive) circular segments. Note that the direction of the midline

of saliency coincides neither with direction of the SV nor with that of the vertical retinal

meridian (RM), nor with that of the physical vertical (PV).
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SUMMARY

Subjects judged eye level, defined in three distinct ways relative to three distinct reference

planes: 1) a gravitational horizontal, giving the "gravitationally referenced eye level" (GREL); 2) a
visible surface, giving the "surface-referenced eye level" (SREL); and 3) a plane fixed with respect

to the head, giving the "head-referenced eye level" (HREL). The information available for these

judgments was varied by having the subjects view an illuminated target that could be placed in a

box which: 1) was pitched at various angles, 2) was illuminated or kept in darkness, 3) was

moved to different positions along the subject's head-to-foot body axis, and 4) was viewed with

the subjects upright or reclining. Our results showed: 1)judgments of GREL made in the dark

were 2.5 ° lower than in the light, with a significantly greater variability; 2) judged GREL was

shifted approximately half of the way toward SREL when these two eye levels did not coincide;

3) judged SREL was shifted about 12% of the way toward HREL when these two eye levels did

not coincide; 4) judged HREL was shifted about half way toward SREL when these two eye lev-

els did not coincide and when the subject was upright (when the subject was reclining, HREL was

shifted approximately 90% toward SREL); 5) the variability of the judged HREL in the dark was

nearly twice as great with the subject reclining than with the subject upright. These results indicate

that gravity is an important source of information for judgment of eye level. In the absence of

information concerning the direction of gravity, the ability to judge HREL is extremely poor. A

visible environment does not seem to afford precise information as to judgments of direction, but it

probably does afford significant information as to the stability of these judgments.

INTRODUCTION

A normal video display conveys fairly accurate information about exocentric directions

among displayed visual objects (see Ellis, this volume), but not about egocentric directions, partic-

ularly those relative to eye level. This information is important to the observer in the natural envi-

ronment, and can be used to advantage, especially in the case of a head-mounted display. The

concern of the present paper is the mechanism underlying judgments of eye level, and the interac-

tions of vision, gravitation, and bodily senses in these judgments.

There are at least three distinct meanings for visual eye level, all of which are important for

the present analysis. Each meaning has associated with it a distinct reference plane with respect to

which eye level can be specified. If a given reference plane passes through both the eye and a

visual target, the target is said to be at that particular eye level. The three types of eye level are
shown in figure 1, and described in table 1.

43-1



The Target/Head (T/H) system isresponsibleforthedeterminationof thedirectionof a target

relativetothe head,or head-referencedeye level(HREL). This system presumably uses

extra-retinal(e.g.,kinestheticor proprioccptivc)eye positioninformation(Matin,1976). The

Target/Gravity(T/G) system isresponsibleforthedeterminationof thedirectionof a targetrelative

togravity,thegravitationallyreferencedeye level(GREL). Itiscomposed of T/H and a

Head/Gravity (H/G) system. Thc lattersystem presumably operateson the basisofvcstibular

(primarilyotolithic)and posturalinformation(Graybiel,1973). The Target/Surface(T/S)system

isresponsiblefordeterminingthedirectionof atargetrelativetoa visiblesurface,the surface-

referencedeye level(SREL). In ordertojudge thedirectionof a targetrelativetothe SREL, an

observermust use opticalinformationabout theorientationof the surface;no extra-rctinal,ves-

tibular,orotherproprioccptivcinformationisnecessary.The opticalinformationinvolvedmight

be in theform of depth cues which allow theobservertocompare eye-to-surfacedistancewith

target-to-surfacedistance,or itmight be ina form which allowsa "direct"determinationof SREL

from opticalinformationwithoutrecoursetojudgments ofdistance(Gibson, 1950; Purdy, 1958;

Sedgwick, 1980). Thus, inprinciple,T/S can be completely independent ofT/H and T/G.

If an observer is standing on a level ground plane in a normal, illuminated, terrestrial envi-

ronment, with head erect, all three eye levels (HREL, GREL, and SREL) coincide, and determina-

tion of any one automatically leads to determination of the other two. It is thus impossible, in that
environment, to determine the relative contributions of the three physiological systems described.

To do that, some means of separating them is necessary. Various methods to accomplish this sep-

aration were used in the following experiments.

EXPERIMENT I: THE EFFECT OF ILLUMINATION ON JUDGMENT OF GREL

Introduction and Method

Our experimental paradigm consisted simply in having the subject adjust a point of light to

eye level, def'med in one of the three ways above. First, we ask, "What contribution does optical
information make to judgments of GREL?" To answer this question we simply turned off the

lights. This eliminated optical information regarding orientation to the ground plane and all other

environmental surfaces, and presumably eliminated information to the T/S system. The subject

was seated in a dental chair which he or she could raise and lower hydraulically. (This technique

minimized the possibility of the subject simply setting the target to the same visible point in each

trial.) The task was to adjust the height of the chair so that the subject's eyes were "level" with a

small target. (All three types of eye level are coincident in this situation.) A total of 80 trials
occurred for each of 10 subjects.

Results

Constant errors (which indicate accuracy) and standard deviations (which indicate precision)

were calculated individually for each subject. The averages over all subjects are shown in table 2.

The differences between light and dark are significant (p < 0.01 by ANOVA).
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DISCUSSION

The f'mding of higher constant error in the dark means that a small target appears to be about

2.5 ° higher in the dark than in the light. Others (MacDougall, 1903; Sandstrom, 1951) have found

similar results. We have no satisfactory explanation for this effect.

The finding that eye level judgments are more variable in the dark is not surprising, nor is it

easily explained. Three distinct hypotheses seem possible; the first two assume that T/S provides

more accurate and precise directional information than T/G; the third makes no such assumption.

The three hypotheses are

1. The "suppression" hypothesis assumes T/G is simply suppressed when T/S is available.

If T/S is more precise than T/G, this suppression will result in improved precision.

2. The "weighted average" hypothesis assumes that the variability of the final judgment is a

weighted average of the variabilities of T/G and T/S.

3. The "stability" hypothesis assumes that the function of optical information is to minimize

the drift of directional judgments made by means of nonoptical information. Thus, no directional

information per se is necessary from T/S, and no assumptions are made about its precision.

The following experiments are intended to help decide among these three hypotheses.

EXPERIMENT 2: THE EFFECT OF PITCHED SURROUNDINGS ON GREL

Introduction

Another way to study the interaction of the eye-level systems is to put them into "conflict."

This effect has been extensively investigated in the roll dimension with the now classical "rod-and-

frame" paradigm (Witkin and Asch, 1948).

Method

A modification of the "pitchbox" method (Kleinhans, 1970) was used. Each of 12 subjects

looked into a Styrofoam box, 30 cm wide by 45 cm high by 60 cm deep. The box was open at one

end, and could be pitched 10 ° up or down (fig. 2).

Illumination was very dim (0.5 cd/m 2) to minimize visibility of surface features, but the

inside edges of the box could be seen clearly. The apparatus allowed the pitchbox to be displaced
linearly up or down as well as to be changed in pitch orientation. The subject could indicate eye

level by adjusting the vertical position of a small target (produced by a laser beam).

In this experiment, the subject was instructed to set the target to the point in the pitchbox that
was at his or her GREL. A 2x2x3x2 design with replication was used. The experiment consisted

of four within-subject factors: (1) viewing condition (dark vs. light), (2) pitchbox position (high
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vs. low: 6 cm apart), (3) pitchbox angle (10 ° up, level, or 10 ° down), and (4) laser starting posi-

tion (up vs. down). Each factor combination was presented twice, yielding a total of 48 trials per

subject.

RESULTS AND DISCUSSION

Box Pitch

Mean error of judged GREL is plotted in figure 3 as a function of orientation, position, and

illumination of the pitchbox. It is clear that a strong effect of orientation on GREL exists in the

light condition, but not in the dark. This can be described as a shift of judged GREL in the direc-
tion of true SREL. The magnitude of this shift is indicated by the slope of the judgment function.

A total change in pitch (i.e., of SREL) of 20 ° produced a shift in GREL of 11.1 o in the light, but

only 1.5 ° in the dark. We will consider the slope of 0.55 ° (in the light) to be a measure of the

strength of the effect of the visual environment. This effect is comparable in magnitude to that

found by Matin and Fox (1986), and by Matin, Fox, and Doktorsky (1987). The simple fact of

compromise between SREL and GREL means that T/G is not totally suppressed, even while T/S is

operating, and is strong evidence against the suppression hypothesis.

Box Height

The effect of box height is clearly evident in the figure. The linear shift of the pitchbox of

6 cm (5.5 ° of visual angle) produced a 1.47 cm (1.35 °) shift in GREL. This is comparable in

magnitude to a similar linear displacement effect found by Kleinhans (1970). It may be due to the

Dietzel-Roelofs effect (Howard, 1982, p. 302), where the apparent straight ahead is displaced

toward the center of an asymmetrical visual display. Another possible explanation is a tendency

for subjects to set eye level toward the same optically determined point on each successive trial.
Whatever the cause of this effect, it may account for as much as 40% of the orientation effect, since

with our apparatus, a change in orientation also produced a displacement of the visual scene.

Variability

It might be expected that conflict between two systems would greatly increase variability.

For example, each system could contribute a component equal to its own variability, and there

would be an additional component caused by variability in combining the systems. Figure 4

shows within-subject standard deviations calculated separately for each of the three orientations, in

the light and the dark.

Here it can be seen that variability of judgment in the dark is higher than in the light; how-

ever, it is not affected by orientation. There is no more variability when the systems are in conflict

(at +10 °) than when they are not (when the pitchbox is level, at 0°). This finding indicates that the

weighting of the systems is very stable over a series of trials for each subject.
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EXPERIMENT 3. THE EFFECT OF GRAVITY ON SREL JUDGMENTS

Introduction and Method

To observe the operation of T/S, we instructed the subject to align his or her line of sight

with the floor of the movable pitchbox, thus judging the SREL. Just as we "turned off" T/S by

extinguishing the light, we can turn off T/G by orienting the subject so that gravity does not abet
the task. Each of 12 subjects judged SREL, both with upright posture, when they could presum-

ably use gravitational information and T/G, and reclining on the left side, where gravity and T/G
were of no use. (The T/H system presumably continued to operate in both conditions.) In the

upright condition the method was identical to that of Experiment 2, except that the instructions
were to find SREL rather than GREL. In the reclining condition the entire apparatus (shown in

fig. 2) was rotated 90 ° .

As in Experiment 2, the pitchbox was set in two different positions displaced 6 cm along the

subject's longitudinal body axis (Z axis).

Results and Discussion

Results are plotted in figures 5 and 6. ANOVA showed significant effects of box pitch and

box height.

Box Pitch

There is a clear shift of SREL judgments in the direction of HREL in both the upright and

reclining conditions. The slope is 0.15, much less than the 0.55 found in Experiment 2. (Note

that, while Experiment 2 showed an effect of optical variables on a nonoptical judgment, the pres-

ent experiment found an effect of nonoptical variables on an optical judgment.) The fact that the
slope is essentially the same for both upright and reclining body orientations implies that T/H rather

than T/G is producing the bias we obtained. This result is similar to that of Mittlestaedt (1983).

Box Height

The effect of the 6-cm box displacement was a shift of 2.47 cm (2.26 °) in the upright and

3.5 cm (3.21 °) in the reclining condition. The size of this effect implies that the subjects did not

effectively use the optical orientation information available to them. Instead, they seem to have had

a strong tendency to set the target near the same location on the back of the box with each trial.

Variability

Standard deviations for SREL judgments are shown in figure 7.
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SRELjudgments made with the subject upright showed greater within-subject variability than

those made with the subject reclining. This observation may be taken to imply that gravity does

not enhance the precision of SREL judgments under upright conditions.

EXPERIMENT 4: THE EFFECT OF GRAVITY AND PITCHED

SURROUNDINGS ON HREL JUDGMENTS

Introduction and Method

To observe the influence of T/S on T/H, we instructed the subject to set his or her eyes

"straight ahead" and place the target at the fixation point, thus judging HREL. In the upright con-

difion the method was identical to that of Experiment 2, except that the instructions were to find
HREL rather than GREL. The reclining condition arrangement was identical to that of

Experiment 3.

Results and Discussion

Results are plotted in figures 8 and 9. ANOVA showed significant effects of orientation and

box height.

Box Pitch

There is a clear shift of HREL judgments in the direction of SREL in both the upright and
reclining conditions. The slope for the judgments of HREL with upright posture in the light is

0.45, about the same magnitude as was observed in Experiment 2. We thought that this effect
could be due to a confusion of instructions when HREL and GREL were coincident, and we

expected a much weaker effect in the reclining conditions, when GREL was absent. In fact, how-
ever, a much stronger effect was found (slope = 0.89). This can be explained in terms of

Mittlestaedt's (1986) vector combination model. In the upright condition, both T/G and T/H indi-

cate a more or less horizontal eye level, and T/S would be combined with both of these. In the

reclining condition T/S combines with only T/H. The result in the reclining condition is thus closer
to T/S.

Variability

It can be seen in figure 10 that, for upright posture, the variabilities of HREL and GREL

judgments are very similar, both in the dark and in the light. For reclining posture, however,
HREL variability is twice as great in the dark as in the light. This result indicates that the presence

of gravitational information has a stabilizing effect on HREL judgments.
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CONCLUSIONS

1. Increased precision in the light. We present evidence against both the suppression and the

weighted average hypotheses. Only the stability hypothesis is not contradicted by these data. This

hypothesis could be tested directly by using a random dot field as a visual environment. Such a

field would have no direction information, so any improvement in precision of GREL would be by

means of stability information.

2. Box displacement effect. This may be a significant factor in the orientation effect. It

could be controlled in a future experiment by rotating the pitchbox around the center of its back,

rather than around the subject's eye.

The large size of this effect when judging SREL indicates that ability to judge orientation of

the line of sight in the pitch dimension relative to a surface on the basis of purely optical informa-

tion is poor under the conditions of this experiment.

3. Head relative information. Perhaps our most surprising result was the almost complete

"visual capture" of HREL judgments in the light while the subject was reclining on his or her side

in Experiment 4, and the corresponding high variability of these judgments in the dark. Both of

these results indicate very low ability to use T/H to judge eye level in the absence of gravity infor-
mation. In more practical terms, this result indicates that judgment of the pitch of the observer's

head (and by implication, the rest of his or her body) relative to a surface is much less precise, and

subject to a much higher degree of visual capture, when gravity is not present to aid this judgment.
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TABLE 1. TYPES OF EYE LEVEL

Symbol Type Physiological

system

Reference plane

HREL

GREL

SREL

Head-referenced eye level

Gravity-referenced eye level

Surface-referenced eye level

Target/head (T/I-I)

Target/gravity (T/G)
(T/G = T/H + H/G)

Target/Surface (T/S)

Arbitrary plane tied to head
Gravitational horizontal

Ground surface or other

visible plane surface

TABLE 2. MEANS AND STANDARD DEVIATIONS (DEG)
FOR ERROR IN EYE-LEVEL JUDGMENTS IN LIGHT

AND DARK, Average of 10 subjects (Stoper and Cohen, 1986)

Light Dark

Constant error (mean)

Variable error (standard deviation)

0.29 2.79

1.03 1.72
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Figure 1.- Three types of eye level in normal terrestrial environment. See table 1 for description.
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Box High

Box Low

4___ Box Pitched Up

Pitched Down

Figure 2.- Orientations and positions of the pitchbox.
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pitchbox was pitched up. Error bars represent the standard error of the mean (between

subjects).
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VOLUNTARY PRESETTING OF THE VESTIBULAR OCULAR

REFLEX PERMITS GAZE STABILIZATION DESPITE

PERTURBATION OF FAST HEAD MOVEMENTS
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SUMMARY

Normal subjects are able to change voluntarily and continuously their head-eye latency

together with their compensatory eye movement gain. A continuous spectrum of intent-latency

modes of the subject's coordinated gaze through verbal feedback could be demonstrated. It was
also demonstrated that the intent to counteract any perturbation of head-eye movement, i.e., the

mental set, permitted the subjects to manipulate consciously their vestibular ocular reflex (VOR)

gain. From our data we infer that the VOR is always "on." It may be, however, variably sup-

pressed by higher cortical control. With appropriate training, head-mounted displays should per-

mit an easy VOR presetting that leads to image stabilization, perhaps together with a decrease of

possible misjudgments.

INTRODUCTION

For some time it has been known that visual and mental effort influence the vestibular ocular

reflex (VOR). Besides visual long- and short-term adaptation to reversing prisms (Melvill Jones

and Gonshor, 1982) and fixation suppression of the VOR (Takemori and Cohen, 1974; Dichgans

et al., 1978; Zangemeister and Hansen, 1986), the mental set of a subject can influence the VOR,

e.g., through an imagined target (Barr et al., 1976; Melvill Jones et al., 1984) or anticipatory

intent only (Zangemeister and Stark, 1981). In contrast to animals, human head and eye move-

ments are governed by a conscious will of the human performer that includes verbal communica-
tion. Thus in a given experimental setup, the synkinesis of active human gaze may be changed

according to instruction. The verbal feedback to the subject might permit a whole range of gaze

types, even with amplitude and prediction of a visual target being constant. The gaze types

(Zangemeister and Stark, 1982a) are defined by head minus eye latency differences (table 1). This

has been demonstrated particularly by looking at the timing of the neck elektromyogram as the head

movement control signal (Zangemeister et al., 1982b; Zangemeister and Stark, 1983; Stark et al.,

1986). In this study, we compared the voluntarily changeable human gaze types performed during

the same experiment with and without the addition of a randomly applied pertm'bation to the head-

eye movement system. We tried to answer three questions in particular:

1. Are we able to modulate continuously the types of coordinated gaze through conscious

intent during predictive active head movements?

2. What is the gaze (saccade and VOR/CEM (compensatory eye movement)) response to

passive random head rotation from zero head velocity with respect to the preset intent of a given

subject?
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3.Doesrandomperturbationof theheadduringtheearlyphaseof gazeaccelerationgenerate
responsesthatarethesumof responsesto experiment(1) and(2)?

METHODS

Eye movements were recorded by monocular DC Electrooculography, head movements by

using a horizontal angular accelerometer (Schaevitz) and a high-resolution ceramic potentiometer
linked to the head through universal joints (Zangemeister and Stark, 1982c). Twelve normal sub-

jects (age 22-25) attended a semicircular screen sitting in a darkened room. While they actively
performed fast horizontal (saccadic) head rotations between two continuously lit targets at +30 °

amplitude with a frequency around 0.3 Hz, they were instructed to focus on the following tasks:

(1) "shift your eyes ahead of your head," (2) "shift your head ahead of your eyes." During (1)

they were instructed to shift eyes "long before" (i, type 11"),or "shortly before" (ii, type I) the head.

During (2) they were instructed to shift head "earlier" (i, type IIIA), or "much earlier" (II, type

IIIB) than the eye, eventually "with the intent to suppress any eye movement" (type IIIB or IV).
Each task included 50 to 100 head movements.

Perturbations were done pseudorandomly, (1) from a zero P,V,A (position, velocity, accel-

eration) initial condition of the head-eye movement system, and (2) during the early phase of head

acceleration. They consisted of (1) fast passive head accelerations, of (2) short decelerating or

accelerating impulses during the early phase of active head acceleration and were recorded by the
head-mounted accelerometer. Perturbation impulses were generated through an apparatus that

permitted manual acceleration or deceleration of the head through cords that were tangentially

linked directly to the tightly set head helmet.

RESULTS

1. The subjects demonstrated their ability (fig. 1) to switch between gaze types in the
experimentally set predictive situation of constant and large-amplitude targets. The respective gains

(eye/head velocity) were: ty.II 0.9-1.1, ty.III 0.13, ty.IV 0.06-0.09. This result was expected

from our earlier studies (Zangemeister and Huefner, 1984; Zangemeister and Stark, 1982a,c). The

subjects showed differing amounts of success in performing the intended gaze type, with type IV

being the most difficult to perform, supposedly because of the high concentration necessary

(table 1).

2. Random perturbation of the head while in primary position, with head velocity and accel-

eration being zero (fig. 2), resulted in large saccades/quick phases of long duration, and a large

and delayed VOR/CEM, if the subject had low preset intent to withstand the perturbation; in this

case head acceleration showed a long-lasting damped oscillation. Respective gains were: figure 2

(upper): 0.35 (upper) 0.45 (lower); figure 2 (lower left): 0.5 (upper), 0.17 (lower). With

increasing intent of the subject (fig. 2 left, middle, and lower), head acceleration finally became

highly overdamped, but still with comparable initial acceleration values, and eye movements

showed increasingly smaller and shorter quick phases as well as an early short VOR response. In

addition, with the highest intent a late anticompensatory eye movement was obtained.
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3a.Randomperturbationsof theacceleratinghead,i.e., suddenaccelerationor deceleration
of gazein flight (fig. 3),werecharacterizedby smallVOR responsesaftertheperturbationin case
of high intentof thesubjectasin gazetypeIIIB, or muchhigherVOR/CEMgainin caseof low
intent comparableto gazetypeI. Respectivegainswere: figure 3 (left) ty.I 0.55, ty.3 0.06,
ty.IV 0.08 (left), 0.09 (right); figure 3 (right): 0.13 (upper),0.90 (lower).

3b.Randomperturbationswerealsoappliedduringcoordinatedhead-eyemovementsin
pursuit of asinusoidallymovingtarget(maximumvelocity50°/sec)with theVOR beingsup-
pressedthroughconstantfixation of thepursuittarget. Figure4 (left) demonstratesthedifferent
amountof VOR fixation suppressionasafunctionof changingintentduringfixation of asinu-
soidaltargetof thesamefrequency.With perturbation(fig. 4, right) aresponsewasobtainedthat
wascomparableto theresultof experiment(2). Thatis, dependingon thesubject'sintentand
concentration,theVOR responsewaslow for high intentandviceversa(gain fig. 4, right:
0.044).

Therefore, the three initial questions could be answered as follows:

1. In nonrandom situations subjects can intentionally and continuously change their gaze

types.

2. Gaze responses to passive random head accelerations depend on the subject's preset
intent.

3. Perturbation of predictive gaze saccades in midflight results in the sum of tasks one and
two.

DISCUSSION

The input-output characteristics of the VOR are subject to major moment-to-moment fluctua-

tions depending on nonvisual factors, such as state of "arousal" (Melvill Jones and Sugie, 1972)
and mental set (Collins, 1962). More recently, it has been found that the influence of "mental set"

depends explicitly upon the subject's conscious choice of intended visual goal (Barr et al., 1976;

Sharpe et al., 19081; Baloh et al., 1984; Fuller et al., 1983), i.e., following earth-fixed or head-

fixed targets during head rotation. Consistent alteration of the mentally chosen goal can alone pro-

duce adaptive alteration of internal parameters controlling VOR gain (Berthoz and Melvill Jones,
1985). Obviously, comparison of afferent retinal slip detectors with concurrent vestibular afferents

can be substituted by a "working" comparison made between the vestibular input and an efferent

feedback copy of either the concurrent, or the imagined or anticipated concurrent, oculomotor out-

put, as proposed by Miles and Eighmy (1980).

Our results here demonstrate the ability of the subjects to perform short-term adaptation dur-

ing verbal feedback instructing for eye-head latency changes that changed the types of active gaze.
These results are comparable to the data from Barr et al. (1976), in that an almost immediate

change between different VOR gains with constant visual input could be generated. In addition,

our perturbation experirnents expanded these data, demonstrating the task- (or gaze-type) depen-
dent attenuation of the VOR. This is in contrast to results in animals, where perturbation of
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visually triggered eye-head saccades resulted in an acceleration of the eye (Guitton et al., 1984;

Fuller et al., 1983), because a conscious task-influence of the VOR is impossible. Therefore not

only can a representation of the target's percept (Ban" et al., 1976) be created, but also an internal

image of the anticipated VOR response in conjunction with the appropriate saccade.

We hypothesize that through the cortico-cerebellar loop a given subject is able to continu-
ously eliminate the VOR response during predictive gaze movements. This is done internally by

generating an image of the anticipated VOR response in conjunction with the appropriate saccade,

and then subtracting it from the actual reflex response. This internal image can be manipulated

intentionally and continuously wrI'HOUT a VOR on/off switch. In this way a flexible adaptation

of the conscious subject to anticipated tasks is performed.
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Table1.- Gazetypesdefinedby latency:eyeminusheadlatency.TypeII: earlypredictionof
eye,lateheadmovement;eyemovementdominatesgaze.I: headfollowseyeshortlybefore
eyehasreachedtarget;classicalgazetype. llI: head and eye movements start about simulta-

neously. Predictive gaze type. IV: early prediction of head, late eye saccade; head move-

ment dominates gaze. Suppression of VOR/CEM in III and IV. See also figure lb.

Type Eyelatency-headlatency, msec Average rate of success in generating intentionally

different gaze types through verbal feedback,%

I +50 76

II <50 56
IIIa >50-200 69

IIIb >200-550

IV >550 16
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THE MAKING OF THE MECHANICAL UNIVERSE

James Blinn

JPL Graphics Laboratory
Pasadena, California

EDITORIAL FOREWORD

The Mechanical Universe is a two-semester, introductory level, television-based physics

course. In the fall of 1985 the first semester of The Mechanical Universe was released to the

academic community and public broadcasters. The two semesters of the course, The Mechanical

Universe and Beyond the Mechanical Universe, consist of 26 half-hour television lessons and

two versions of a text, one for science and engineering majors and the other for nonmajors. The

course is scientifically sophisticated and mathematically rigorous, teaching and using calculus.

The lecture programs contain computer animation used as a primary tool for the instruction in

physics. Each program begins and ends with Caltech Professor David Goodstein providing

philosophical, historical, and often humorous comments from his lectures at Caltech.

The television series is not only the basis for a college course, but it also is suitable for a

general audience interested in stimulating and challenging science programming. The

Mechanical Universe television series and college course were funded by The Annenberg/CPB

Project and The National Science Foundation (Calfomia Institute of Technology, 1986).

The following sections excerpt a number of design considerations regarding the dynamic

computer graphics used to communicate physical phenomena and mathematical principles
included in the Mechanical Universe (Blinn, 1987). The specific recommendations were not

intended to be freely extended to other graphics interface applications, but do represent the

considered judgment of a pioneer of computer graphics and certainly identify design issues that
are faced in all attempts to use computer graphics as a medium for communication of spatial
information.

CHAPTER 1 - OVERVIEW

1.1 INTRODUCTION

The Mechanical Universe project required the production of over 550 different animated

scenes, totaling about 7 1/2 hours of screen time. The project required the use of a wide range of

techniques and motivated the development of several different software packages. This report is

a documentation of many aspects of the project, encompassing artistic/design issues, scientific

simulations, software engineering, and video engineering.

My interest in Mechanical Universe is twofold. One, to produce the material and two, to
see what tools need to be developed. It is hard to develop tools if you don't know what they are

supposed to do. Having a large animation project provides a lot of experience on what the
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problems really are, instead of what somebody thinks they might be. This is a somewhat

empirical approach to systems design. That is, several special-case systems are built, motivated

just by the needs of some particular project. They are then analyzed to see what things they
seem to have in common. In doing this sort of examination, it is important to realize that you

cannot prove that your assertions are correct in the same sense that you can prove a mathemati-
cal theorem. The best that can be said is that the mechanisms described here seem to work well

for the problems to which they have been applied.

In this section I will discuss a few ideas on graphical design in general. The emphasis

will be on concepts that are not specifically for scientific animation, but those that may be

applied to other uses of visual communication.

I haven't learned this by formal training. It has come by practice, intuition, and perhaps

genetics (I come from a family of artists). I learned to solve design problems by being

presented with them and by being forced to think about the implications of color and shape
choices. The results are what made sense to me at the time.

CHAPTER 2 - GRAPHICAL DESIGN (STATIC)

Static design refers to the appearance of a single frame. The concept of motion design is

discussed in the next chapter.

2.1 WHAT IS A DESIGN PROBLEM?

Let us begin with the question, "what is a design problem?" It can be likened to pan-

tomime. You must present some information that, perhaps, could be described in words, but

you are required to use only pictures.

Some examples:

The Voyager spacecraft approaches a planet. A moon is off to the side. You must

pan across to see it, but still give the viewers some idea of context of where they are

now looking, compared with where they were looking before.

How about a more detailed example? We will take an example from program 5,

Vectors. The idea is to list the various types of vector expressions and to give an idea
of whether the result is a vector or scalar. New items are added to the list as the pro-

gram proceeds. The whole list may not fit entirely on the screen. In addition, as a

new item is added, some geometric demonstration is needed to show what it is.

Let's look at a solution to this last example. We represent an abstract "space" where

the vectors live as a kind of vector land. There is a river running down the middle separating it

from scalar land. This allows us to display the lists in perspective receding into the distance.

As each new object is introduced, it is added to the front of the list and the list recedes farther

into the distance. Old list items may no longer be legible, but the memory of them is enough to
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remind the viewer of what they are. The key elements are to (1) differentiate between vectors

and scalars and (2) give an impression of three-dimensional (3-D) space, but not to make it
look too realistic.

An oblique view of the ground plane must appear to recede into the distance. This can be

shown by texture. An obvious texture is a grid which shows perspective very well. However,

at this point in the academic development, the notion of a coordinate system has not yet been

presented. Some other textural effect must be used. Texture mapping a random, say pebbly,

texture would be slow. The resolution is to place a randomly scattered group of lines looking

like grass across the plane. Just a few such lines can give a very cheap impression of receding

ground plane. Also, the color of the plane is made to get bluer and paler as it moves into the
distance.

Drop shadows help to bring out the 3-D quality and make the vectors seem to hover

above the plane, giving an interesting surreal effect.

Later in the program, when unit vectors and coordinates are introduced, the grid is placed

on the plane (but only a small piece of it). Grids are a bit overused in computer graphics, but
for much of what we do at Mechanical Universe, they are necessary because we are actually

plotting graphs.

When we introduce unit vectors c and _, they tip their hats. When we show the con-

struction of a vector product, the term for vector add and vector multiply are slid down close to

the grid.

2.2 DIRECTION OF ATTENTION

It is necessary to direct the attention of the viewer to the important parts of the picture.

Scenes are shown on television in fairly brief bursts, so the important parts must stand out.

One good trick for doing this is to look away from the screen and look back quickly; determine

what you see first when looking back. Is that the important part of the picture? If not, change

the picture to make it so.

This means avoiding gaudy backgrounds; the background should not look more interest-

ing than the foreground. In one example I had an equation over a dark blue background that

graded into orange, giving a sort of sunset effect. It was very pretty, but the problem was that

when you first looked at the screen, all you saw was the orange. I changed the background to a

more neutral color and now the first thing you see is the equation.

2.3 AVOIDING INFORMATION OVERLOAD

I consciously avoid trying to "dazzle" the viewers. Dazzling implies an overload or

numbing of the senses. The idea is to communicate and draw the viewers in instead of making

them tip backwards off their chairs.
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For the same reason, I don't use lots of spinning or tumbling of 3-D objects. Ifs distract-

ing. There is a trade-off here between not giving your audience enough views of an object to

be able to understand its 3-D shape versus making it confusing by spinning it around too

quickly.

One important trick to encourage simplicity is to arrange for the designs to be done while

viewing a monitor from across the room. If the image can be made legible at a distance of

10 ft, it's about right. This discourages putting in too much small detail.

2.4 COLOR SELECTION

Given the color television medium, we have both the opportunity to make scenes in color

and the responsibility to make the colors look good. There are a few tricks to use in color
selection.

I have favorite colors; I lean toward blues and greens. However, I don't like purple. I

once used it purposely to break out of a rut, as a background in the scene on conic sections. I

originally wanted to put a red cone in front of it, but I couldn't get a red that didn't disappear

into the purple in dark areas (as seen in black and white). Finally, I went to a brighter yellow
cone.

2.4.1 Make it Work in Black and White

When designing, look at the picture with the color turned off and see if it "reads" (to use a

designer term). Reads in this context means "can you tell what is going on; do the appropriate

things stand out?"

While color is important in the Mechanical Universe animations, it is not the only thing
that differentiates items on the screen. It's not crucial. I have made consistent color decisions,

but the viewer is not expected to remember color schemes to understand a scene.

2.4.2 Context

Color selection programs are minimally useful because colors always look different in

context. The only real way to see how they look is to make an actual picture of the scene.

2.4.3 Distance Cues

Distance can be represented by making things disappear into a fog. This was done

literally in a scene of the molecular arrangement of a salt crystal.

Other color cues: the color of things gets bluer and paler with distance.

45-4



Field lines are a complex set of 3-D curves. They can look like a pile of spaghetti if

you're not careful. The distance effect is aided by three things: (1) normal depth cueing (things

get darker i.e., less luminance contrast--with distance); (2) drawing them in depth order so a

closer (brighter) line will overlay a farther line; (3) making the intensity of the line darker at the

edges than in the middle. This gives a slight "cylindrical" solid quality to the lines.

2.4.4 Not Too Many

Don't use too many colors.

There is a problem with running out of colors. There are more physical quantities to

represent than there are easily distinguishable colors. You can't use saturation or value to

distinguish things because sometimes these need to be adjusted depending on context, e.g.,

energy.

2.4.5 Consistency

Consistently use color schemes to recall previous results as well as to differentiate things.
We will discuss the color scheme later:

• But the color scheme wasn't always consistent

• Paler colors for mass multiplied by something

• Colored backgrounds for two integrations of gravity law

• Colored backgrounds for bringing external equations to prove Kepler's third law

• Blue texture for energy equation

2.5 2-D/3-D CONSIDERATIONS

Two-dimensional diagrams are easier to understand than 3-D, especially when they are in

motion. This is partly because labels keep getting in the way of 3-D diagrams in some views.

Most of the physics of the first term of Mechanical Universe is essentially 2-D problems (like

Keplerian orbits). These remain 2-D. The inherently 3-D concepts are torque and angular
momentum. The punch line is, use 3-D only when absolutely needed.

In fact, some 3-D situations were simplified to 2-D. For example, I used 2-D for the

Lennard-Jones atomic motion simulation and the ideal gas simulation. The actual physics is

3-D, of course, but 2-D shows the phenomena adequately and 3-D would be really confusing.

In the second term there were more inherently 3-D problems. You must use 3-D for

electromagnetic fields. Many textbooks use 2-D for fields, but much is lost.

Three dimensions are also used as a trick to put more text on the screen. As the screen

tilts back, more text fits. The top row might not remain legible, but we can remember what it

was.
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2.6 MAKING THINGS STAND OUT FROM THE BACKGROUND

Drop shadows help make things stand out from the background. While they are good for
labels on graphs, don't put a drop shadow on the plotted graph line because it detaches it from

the grid.

Put 3-D shadows for 3-D vectors even if there are abstract shapes with no light source.

One can more easily see a 3-D shape by simultaneously having two views of the object, a 3-D

view and a projection of that view on the xy plane. This is what the cubists were trying to

do----show many views of an object at once. The shadow technique is more the way we are

used to seeing and interpreting things.

Make the background a different value; use pale colors.

2.7 REALISM VERSUS ABSTRACTION

Images representing some real, physical object are often overlaid with labels, vectors, etc.

For such scenes, the real object is rendered with a simulated light source and shading (usually
with a simple polygon rendering program). The mathematical abstractions are overlaid with a

line drawing program (lines don't change thickness as they get closer or farther from viewer).

CHAPTER 3 - GRAPHICAL DESIGN (DYNAMIC)

From reading Thomas and Johnson's book (1981), you are left with the impression that

animation is the highest form of human art. It encompasses all aspects of static art and adds

timing and motion, too. Motion design may well be the next great research topic in computer
graphics. Results shown here are very preliminary.

3.1 INTERPOLATION

It is the popular wisdom in animation that spline interpolation is better than linear interpo-

lation. It is smoother. Most of the animations were done with splined motion. However, later

in the series I began experimenting with linear interpolation and found it quite pleasing. Let's

face it, the algebraic motions represent mechanical operations, so why not make them mechani-

cal looking? In this case non-natural (jerky) motion sometimes looks more interesting than

smooth motion because it's different and contains more high frequencies at the key frames.
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3.2 INCORPORATION OF "CLASSIC" TECHNIQUES

There are various classic techniques that are found in "conventional" animation that apply
here.

3.2.1 Squash/Stretch

Squash and stretch refer to a distortion applied to the shape of an object when it under-

goes acceleration. This is easily done by animating the x and y scale factor of an object.

Before it begins to move, it gathers itself up by shrinking in x, then it stretches out in x as it is

moving, and when it stops it shrinks briefly and returns to its normal size. This wasn't done in
the Mechanical Universe as much as it should have been.

3.2.2 Overlapped Motion

The concept of overlapped motion states that motion 2 should start before motion 1 is

completed. This works well with character animation, but I found it of limited use in algebraic

animation. In algebra there is just too much to follow as it is, without having the individual

steps of a derivation merge into each other. Making the steps disjoint in time gives the viewer

a chance to absorb one step before another begins. I did make the x and y motion of an object

overlap, but this just rounds off the corners of the motion.

3.3 PERCEPTIONS OF SPEED

I found it interesting to discover how limited our perception of velocity is. Given two

successive scenes, where an object moves, say, one and a half times as fast in the second scene,

it is very hard to tell which is which. This was proven because we were showing velocity

changes in a lot of the physics. Most of the solutions involved representing velocity spatially

as well as temporally by adding streaks or velocity vectors to moving objects.

Another interesting speed-perception discovery concerns double framing. One would

think that all animation is ideally single framed. Double framing is just an economy measure if

you don't have the computer time to do all the frames. Double framing looks jerkier. But

there's another perceptual effect of double framing-----double-framed motion looks faster than

single-framed motion.

That is, if an object moves across the screen in 1 sec, it will look like it is moving faster if

it is animated as 15 frames double-framed rather than 30 frames single-framed. This was

alluded to in Thomas and Johnson's book (1981) on Disney animation. They said that motion

was sometimes purposely double-framed to give it a "jaunty" look.
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3.3.1 Audience

When doing something of this nature, it is important to keep the audience in mind. I had

a very specific audience in mind when I designed these animations before I understood the con-

cepts. For the most part, these are the explanations that I would have liked to have had, and
that would have made the most sense to me when I was learning physics.

3.3.2 Roots

We are all products of our environment. I would like to mention some previous experi-

ences that have affected my design motions here.

Lillian Lieber and Hugh Lieber are a mathematician/artist team that produced a series of

charming books in the 1940s. Hugh, the artist, had a very surreal sense of making mathemati-

cal symbology visually interesting.

Various Disney animations were produced for science and mathematics. Among these

were "Man in Space" and "Donald Duck in Mathemagic Land."

George Gamow (1967) wrote several books popularizing physics. His best creation is the

Mr. Thompkins series. In these books, Mr. Thompkins attends a physics lecture and falls

asleep. In his dreams the physical point of the lecture is illustrated, usually by exaggerating the

effects so they were more noticeable in daily life. Particularly memorable was a scene in the

"Old Woodcarver's Shop" where a sculptor makes atoms out of little green marbles (electrons)

and little red marbles (protons).

The "Chem-studies" series of films were made for high school use. These had several

conventionally done animations of molecular dynamics during chemical reactions. The motion

of the atoms in these animations beautifully gives a sense of the energetics of atomic bonding.

These were produced by David Ridgeway, who is on the national advisory committee to the
Mechanical Universe.

The Bell Labs produced science films such as The Unchained Goddess and Our Mr. Sun.

These were directed by Frank Capra, a Caltech graduate, and also a member of the advisory
committee to the Mechanical Universe.

Finally, a telecourse from the past: "Continental Classroom"; this was a for-credit course
offered on television in about 1960. It had classes in mathematics, physics, and chemistry.

When I was young I was interested in this stuff, but I didn't know where to go for information.

When I found this course I got up religiously each morning at 6 a.m. to watch it. I understood

only about half of it, but it kept my interest in the subject alive. I hope that, with the
Mechanical Universe, I might be making a series that generates similar interest in a new

generation of students.
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CHAPTER 4 - VISUAL METAPHORS (DESIGN)

In this chapter I will discuss visual metaphors for physics, grouped by design concepts.

4.1 COLOR

A normal textbook diagram has shapes, lines, and text. In video we have, in addition,

color and motion. The challenge is using them. Motion usage is, for the most part, more

obvious than color usage. Where there is some previous convention for color assignment, I
tried to use it. Where there was none, I had to invent one.

When referring to explicit color values, I will use the notation developed by Alvy Smith.

Color is three numbers representing

1. Value or brightness (0... 1).

2. Hue going around the color wheel. Numerical quantities go from 0-5 for one cycle:

0 = red, 1 = yellow, 2 = green, 3 = cyan, 4 = blue, 5 = magenta.

3. Saturation. 0 = neutral, 1 = fully saturated.

Written, as an expression, (i,j,k) (i.e., (1,0,I)) would be a red of maximum brightness and
saturation.

Many different ideas were keyed to colors. Much of this was subtle, and the animations

never relied solely on the color to be understandable. I was left with the impression, however,

that there simply aren't enough colors to have a unique one for everything.

4.1.1 For Dimensional Analysis

When physical abstractions such as acceleration or torque are represented in vector dia-

grams or algebraic labels, there must be some color. Rather than just making all vectors and
labels white, I chose to institute a color scheme that is keyed to the units in which the quantity

is measured. These color schemes are maintained throughout the series. This provides for a

sense of continuity and also gives the viewer a sense for dimensional analysis.

Also, I tried to avoid the temptation to get overly cute with the colors. Colors are used

primarily for labels. Terms in equations are usually white; otherwise, the equation tends to

look like confetti. A term is shown in color only if the dimensions are important for a particu-
lar derivation.

Position, velocity, and acceleration are the most commonly used quantifies. Position was

a green = (1, 1.8, 1); velocity was a yellow = (0.7, 1.2, 1); and acceleration was a

red = (1, 0.2, 1).
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There are several motivations for this general color scheme. As successive derivatives

are taken, the color shows a smooth progression along the color wheel from green to red so

there is a visual progression between the colors. (Actually, the reddening applies not so much
to derivatives as to the division by time.)

Acceleration is the most "active" of the three concepts. But red means "stop," not a very

dynamic idea (although it takes deceleration to stop). This might be a counter argument for the

use of this color. But red is also the most exciting, attention-getting color. It shows that some-
thing is going on, and thus looks dynamic.

Green (as in grass) shows a static "place-like" effect.

This color scheme worked well when applied to a scene showing an abstract bicycle rider.

The intent was to show elevation and slope. The normal color for informational traffic signs

(green) was used to label the elevation. The normal color for warning traffic signs (yellow)
then labeled the slope.

Note that the colors chosen are not pure; the hue values are not integers. The exact hues

were selected visually to look nice together. Exact primary colors tend to look boring.

Mass times acceleration gives force. Mass times velocity gives momentum. Force and

momentum were given the same colors as acceleration and velocity except that the saturation

was reduced. I think of mass as a sort of dark grey color, looking solid, like lead or iron. So
adding grey to the above colors desaturates them.

Energy is a dark blue color. This was chosen to look sort of like a lightning bolt.
Energy's color is (0.2, 4, 1).

Angular momentum is a sort of rotational concept. I toyed with the idea of giving angular

momentum vectors a sort of barber-pole effect, but it seemed too busy. Angular momentum is

also mass times velocity times distance. Maybe a sort of pale yellowish-green? But that would
not make it distinguishable enough from the other two. Finally, I decided to take off in a new

direction and make it a pale blue. Torque, the derivative of angular momentum, is lavender
(blue with red added to it).

Area and volume were made variants on the green color. Area is a slightly bluer shade.

Volume is a still bluer shade. Maybe I was getting too subtle here, but you have to pick some
color, and it might as well be for some reason.

Actually this choice was not entirely conscious, and as a result, the color for area is not

exactly consistent through the entire series. For example, the color of Gaussian surfaces in the

electricity programs was the position color, not the area color. This led to some problems when

showing surface integrals. You do your best, but sometimes mistakes creep in.
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4.1.2 Solid, Liquid, Gas

In the thermodynamics discussion there is a section on the states of matter. In particular,

a PVT diagram is separated into regions where a substance is a solid, a liquid, and a gas. These

regions were colored as follows.

Solid - medium brown; an earth color, designates the solidity of ground.

Liquid - bluish; like the color of water.

Gas - white; a transparent color.

In the PVT diagram there is a region above the critical point where the distinction

between liquid and gas disappears. Van der Waals' equation was used to find the degree of

liquidity and to calculate a saturation value smoothly grading from blue to white for this region.

4.1.3 Electric Charge

Positive and negative charges are shown in many scenes. There has been a sort of

convention for some time in engineering to make the positive leads red. In addition, the books

by George Gamow represented electrons as green marbles. So a similar color scheme was
chosen for the Mechanical Universe.

But there are two problems here. First, not everyone has a color television set. So the
colors were chosen so that, in black and white, they would still have enough difference in

brightness to be distinguishable. Second, although red and green are complementary colors

visually, in video it is red and cyan (a sort of pale blue). In some instances a neutral charge

(e.g., for neutrons) is shown as, obviously, white. It would seem best to make the plus and

minus colors add up to white. So a more bluish hue was chosen for negative charge. The exact

value was actually changed during the second half of the series to be exactly cyan. This

seemed necessary to make plus and minus add up to neutral, but I'm not sure it was a good idea

in retrospect.

4.1.4 Electric and Magnetic Fields

I've always thought of magnetic fields as blue, and many published diagrams have shown

it as blue. In fact, in an earlier project showing the magnetic field of Jupiter, I made the field

lines blue. The question is, what color are electric fields? Since they are lines between positive

(red) and negative (greenish blue), I decided to make it the color halfway between them,

yellow. Note again that this is a different yellow than is used for velocity.

4.1.5 Relativity Coordinate Systems

There were many scenes in the relativity section that illustrated events as seen from two

different reference frames. The two frames were usually those of a cartoon Albert Einstein and

a cartoon Henry Lorentz. When they first appear, Albert is wearing a tan suit and Henry is
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wearingabluesuit. Thereafter,anyalgebraicor pictorial referenceto Albert's frameis drawn
in tanandanyreferenceto Henry'sframeis blue. Thesecolors were initially selected as typical

colors that suits come in, but they were fine-tuned to show up distinctly in black and white and

when placed on a common background. Actually, when I first decided to do this, I had made

Henry's suit dark grey. But dark grey didn't look good as a comparison color to tan--tan and
blue are more balanced complementary colors. I had to remake one of the first animations just

to change the color of Henry's suit. The production people probably thought I was nuts.

4.1.6 Wave/Particle Duality

The last three programs of the series begin to touch on quantum mechanics. Several of

the scenes depicted wave-particle duality. Complementary background colors were selected to

represent particles and waves. All particle equations appeared over dark pale green; all wave

equations and plots of wave functions appeared with a dark pale magenta background.

4.2 LITERAL VERSUS SCHEMATIC

My tendency is to be too literal. The sizes and timings of some phenomena sometimes

have too big a range to make this easy. But, because this is computer animation, the viewer

expects precision and accuracy. When sizes or timings must be distorted into schematic

diagrams, it is important to give some visual cues that this is being done. One way to do this is
to have the schematic scenes drawn with sketchy or irregular lines. This removes the precision

effect of perfect lines.

4.2.1 Literal

Some things were done geometrically correctly, even though it was difficult. For

example, the radii of the orbits of the Bohr atom are proportional to the perfect squares (1, 4, 9,

16 .... ). To see as many as four orbits, the scale must be too small to make the first orbit clear.

This was usually solved by having the camera pull back when discussing the larger and larger

orbits. This is a useful general principle, as it was described in an earlier chapter concerning a

list receding in perspective. If some things are too small, start close up and pull back.

4.2.2 Schematic

When force laws are introduced, we needed to show the operation of gravitational and

electric forces. At this point, the magnitudes weren't important, only the signs. Crude

schematic faces were used as mass particles (grey faces) and as positive and negative charges

(red and cyan faces). The motion was sketchy, showing only attraction versus repulsion, and
the faces were sketchy, with irregular and comical lines. This visual signaling was not done

enough in the series.
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Other scenes with schematized motion included:

A depiction of resistance in metals. The normal velocity of electrons in a metal is far

greater than the drift velocity, which is the electric current. Therefore, an accurate

depiction of current wouldn't look much different than random thermal motion. The

relative velocities were made more equal for illustration purposes. Also, resistance is

caused by collisions of electrons with imperfections and thermal motions of the atoms

in the metal lattice. These are usually too few and far between to be easily noticeable.

They were made more obvious by flagging some metal atoms a different color and
having the electrons bounce off them elastically, while not being affected by the posi-

tions of all of the nonflagged atoms.

An electrical spark is generated by a chain reaction. Electrons are accelerated by an

electric field and build up enough kinetic energy to knock other electrons off atoms.

Again the typical spacing and frequency of the real situation would not fit on the

screen. Some exaggeration was done.

CHAPTER 5 - VISUAL METAPHORS (PHYSICS)

Here are some more visual metaphors, this time grouped by subject matter, rather than by

design issues.

5.1 ALGEBRAIC BALLET

To make the science respectable we had a lot of algebra to present. Algebra, however,

can be a bit draggy. We decided to liven it up by animating the algebraic transformations that

the equations go through. These animations usually go by quickly. In fact, it is unlikely that

the viewer will be able to follow all the steps upon first viewing. The speed was a concern, but

we felt that making it slower would slow down the programs too much. The idea is to get the

feel for what is going on and be able to look at a videotape slower to get the detail later if
desired.

Transforming algebraic operation into motion proved to be an interesting exercise. Many

of the motions seemed pretty obvious to me, but they are listed here for completeness.

5.1.1 Term Labeling

It's easy to lose track of what different symbols in an equation represent. This was

addressed by having the symbols identify themselves with English words popping out and

shrinking back into them.
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5.1.2 Balancing Act

Simple algebraic operations to move terms around were animated literally.

• Terms moving to the opposite side of the = sign. Adding on one side means subtract-

ing on the other so a + or - sign flips its identity as the term hops over the -.

Factors moving to the opposite side of the = sign. Multiplying on one side means

dividing on the other. When a factor jumps over the =, it lands below or above a divi-
sion bar according to whether it came from above or below.

• Distribution: a(b + c) becomes ab + ac by having the a jump up, split in two, and

each copy land next to the appropriate term.

• Squaring: Either two 2s come down from above and land on each side of the =, or a 2
on one side of an = sails over and changes to a _/sign on the other side.

5.1.3 Canceling

This applies to the removal of identities like a - a or a/a. Some ways used to depict this
were:

• A lightning bolt zaps the two terms and they disappear.

• An eraser appears and erases the terms.

• The two terms turn red and fall off the bottom of the screen together.

• A video-game-style spaceship flies in and f'tres a missile to explode the term.

• A Monty Python-style foot stomps out the terms.

• The Hand of God touches the term and it becomes a puff of smoke. This was used in

the program that derived Kepler's ftrst law (orbits are ellipses) from Newton's laws.

The program made comparisons between the accomplishments of mathematics and

physics and the accomplishments of art, drama, and music. Art was represented by

the Sistine Chapel of Michaelangelo with the Hand of God giving life to Adam. The
essential cancellation in the math that makes the derivation work is r2/r2; this is done

by the Hand of God, too.

• Multiplication sign snipping out a term: The expression v x v is equal to 1. When
this appears, the cross product sign magnifies around the surrounding v's and then

squashes rapidly in y, snipping out the terms.

• Simply fading the terms out: This, of course, was the simplest and was done the most
often.
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5.1.4 Recalling Old Results

When a result from a previous program, or from a previous course is introduced, some

effort was made to indicate to the viewer where it came from. Some examples are:

• A trigonometry book flies in, opens, and trig identities fly out.

• A head with a hinged lid opens to receive some intermediate results; later it returns

and the intermediate results fly out.

• A hand pulls down a window shade with old energy equations.

• An entire scene is reprised from a previous program.

• Some results were derived against a background image of some distinctive color.

Later, when the results are needed, a slide comes in containing the equation with the

same background as old scene.

5.1.5 Substitution

Substitution involves taking an equation defining some variable and replacing occur-

rences of that variable into another equation. Some examples:

• Vertical shrinking. A term is replaced with a number by shrinking the term vertically

to zero and having the number expand up from zero in its place.

Vacuum cleaner. The identity equation appears above the main equation. The

replaced term from the lower equation moves up to the identity to merge with its copy

there. The other side of the identity equation moves down to the empty spot left in the

original equation.

• Several calculus identities (such as turning dr/dt into v) were shown by rotating the

dr/dt about the y axis and having it become v when the other side appeared.

5.1.6 Jokes

The program on wave motion shows some approximate relations between wave speed and

various physical parameters. The = sign ripples like a propagating sine wave while these

equations appear. This was done by modeling the lines of the = sign with a one-cycle helix.

Rotating it about x and then scaling by 0 in z made it ripple.
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5.1.7 Calculus

A few algebraic operations on calculus notation:

• d/dt flies in from left and impacts f to form df/dt.

• The f slides up and down to form (d/dO f from dfldt.

• The two symbols _ and dt move in on either side of f and clamp it together to form
I f(x)dt.

• A simple differential equation like (dx/dt) = y is solved by moving dt to the other
side to make dx = y dt. Then the left-hand d hops over the equal sign and changes
into a _ sign, to make x = _ y dt.

• Integration is done by the j sign ratcheting across an expression, sort of like a credit

card imprinter.

is formed by drawing the circle on the

geometric diagram in the background.

_ is formed by revealing the circle on

a volume in a parallel diagram.

as the path of integration is traced out in a

H as a Gaussian surface is spread out around

5.2 CALCULUS

5.2.1 Limits

Use explosion to express the limiting process when A turns into d. The explosion was

generated by a simple 2-D pattern scaled up and faded out simultaneously.

5.2.2 Symbolic Derivative Machine

Because we evaluate derivatives and integrals symbolically many times in the series, we

developed a quick way to do it--the derivative machine.

5.2.2.1 Design- The derivative machine is an expression transformer. It has two

funcfions---differentiaton and integration. An expression goes in one end and comes out the

other end, so it needed to be thin in the x direction so there would be plenty of room on each

side to show the inputs/outputs. When the derivative machine is first introduced, it comes in a

crate marked "ACME Derivative Machine" (a hat tip to the old Chuck Jones Roadrunner

movies). A crowbar shaped like an integral sign opens the crate.

Some random wheels and lights made it look Rube Goldbergish. The sides are not

exactly straight and the wheels are not exactly round.
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5.2.2.2 Internals- When thederivativemachineis introducedin program3,the internals
areshowntwo ways:

1.As variouselementaryoperationsareintroduced,theyshrinkdown into a sort of circuit

board that is plugged into the machine, the door slams, and a new light blinks on on the front

panel.

2. An alternative view of the internals was given briefly, showing the details of how the
elementary operations are applied to take the derivative of the simple expression x 2. This was

intended to be somewhat a metaphor on how symbolic derivative computer programs work.

The input function comes in on a conveyor belt. An eyeball on a stalk comes down and looks

at it. (This is indicated by a dotted line running from the eyeball to the function.) This is the

pattern recognizer. The derivative operation is basically one of matching the desired function

against a list of known patterns which are pulled down into the scene like window shades.

Then the proper pattern is found and checked. There will be some dummy parameters in the

pattern which need to be filled in with the specific terms from the equation. The eyeball

observes these and some handles come down and simultaneously turn all occurrences of the

dummy parameter into the specific term needed. Identities such as x + 0 or x * 1 are

removed by an eraser. The expression x + x is turned into 2x by a vise-like adder. The final

expression is carried out on a conveyor belt.

5.2.2.3 Operation- The lever on the top controls the operation of the derivative machine.

When you throw the lever to the right, it takes an expression in the left hopper and spits the

derivative out the right hopper. When you throw the lever to the left it takes an expression in

the right hopper and spits out the antiderivative (integral) on the left. Sometimes the expres-

sion stays put and the derivative machine passes over it., Note: it doesn't evaluate integral
expressions, it just takes the antiderivative (i.e., you don t feed _ x 2 in to get (1/3)x 3, you just

feed in x2). As it operates, the horizontal and vertical scales cycle up and down a bit to give it

a squash and stretch look.
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ORIGINALS PAGE

BI.ACK ABI:) ']_HI.I-E _HO]_OGRAP_H

Computer animation dissects the forces and motions that make a gyroscope do its tricks.

The spring force, or Hooke's law, is described in this animated scene from the Harmonic Motion

episode.

The Mechanical Universe derivative machine has become a legend in its own time.

45-18



N90-22962

THE
SYNESTHETIC ART THROUGH 3-D PROJECTION:

REQUIREMENTS OF A COMPUTER-BASED SUPERMEDIUM

Robert Mallary

ARSTECNICA: Center for Art and Technology

University of Massachusetts/Amherst

Amherst, Massachusetts

SUMMARY

A computer-based form of multimedia art is proposed that uses the computer to fuse aspects

of painting, sculpture, dance, music, film, and other media into a one-to-one synesthesia of image

and sound for spatially synchronous three-dimensional (3-D) projection. Called synesthetic art,
this conversion of many varied media into an aesthetically unitary experience determines the char-

acter and requirements of the system and its software. During the start-up phase, computer stereo-
graphic systems are suitable for software development. Eventually, a new type of illusory-

projective "supermedium" will be required to achieve the needed combination of large-format pro-

jection and convincing "real-life" presence, and to handle the vast amount of 3-D visual and

acoustic information required. The influence of the concept on the author's research and creative

work is illustrated through two examples.

INTRODUCTION

The concept of synesthetic art described here is the product of an approach to art that looks to
science and technology for the invention of new media for art, and to new media as a way of

expanding the aesthetic, stylistic, and expressive possibilities of art. That science and technology

indeed have the capacity to play this role was demonstrated in the last century by the invention of

photography and cinematography, and more recently by the invention of television. That not every

application of science and technology to the visual arts has this impact, however, is demonstrated

by the history of kinetic sculpture and other kinds of technologically oriented art that have appeared
over the last 40 years, none of which have acquired the importance of these earlier inventions or

developed into an authentic and accepted new art form (ref. 1).

In 1967, on learning that the computer, in addition to everything else it can do, is able to

generate and process images, I asked myself whether this amazing brain-like technology would

eventually provide the basis for a new form of art comparable in importance to photography and

film. On deciding that the computer indeed has this potential, my next question concerned the
character of this new form of art and the role of the computer in its production. While these rumi-

nations took place without benefit of such terms as synesthetic art or supermedium, the concept I

developed, though somewhat vague compared to my way of thinking about it now, was essentially

the same as the one proposed and described here(ref. 2).

Before providing a systematic outline of synesthetic art and its requirements, it may be help-

ful if I briefly describe what I mean by synesthetic art and what I visualize when using the
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expression. The best way to do this vividly and expeditiously calls for a small exercise in

"imagineedng."

Think of an empty transparent block of space about the size of a 19-in. computer-graphic
color monitor, its depth the same as its height. Fin this space with a collection of floating objects

that vary considerably in shape and size, some small and spherical like marbles, others larger and

more irregular in shape. Then add something quite different to the mix, something like a luminous

cloud or foggy mist. Endow this combination of solid forms and vaporous intangibles with col-

ors, textures, patterns, shadows, and other attractive qualities and attributes.

At this point, set the ensemble in motion, into a choreography of disappearing and reappear-

ing, swelling and contracting, disintegrating and reassembling, changing one into another and

back, and into arrays of identical objects that move choreographically to the distinctive sounds of

computer music. And note that the sounds are fully as spatialized as the visual material, with many

of them moving in precise spatial synchrony with them.

Though the dominant effect is more abstract than realistic, there are hints of the real world
here and there. Whether abstract, realistic, or something in between, the objects pass eerily

through one another, completely unhindered by visible mechanical or electrical assistance. Aspects

of painting, sculpture, photography, cinema, and dance fuse into an ambience of near trans-

parency, with objects apparently farthest from the eye nearly as visible as those that are near. With
forms melting into air and air into forms, the overall effect, despite the prevailing three-

dimensionality, is as pictorial--even as "painterly"--as it is sculptural. And because of the patterned

and formalized movement, the affinity with choreography and the dance is as obvious as the con-

nection with painting and sculpture.

These imaginary events in an imaginary block of space are as far from the synesthetic art of

the future as they are from any method of three-dimensional (3-D) projection available today. Yet,

with only minimal trouble and expense, the color monitor of an Atari 1040 ST personal computer

can be converted into a not-too-crude approximation of the imaginary block through the purchase

of a set of liquid crystal stereo goggles (ref. 3). The Atari is low resolution. A more expensive
stereographic system with higher resolution, however, if adapted to a large-format, video

projection system, could expand the block and the events within it to a scale of 6 x 8 ft or more

(ref. 4). Eventually, if my confidence in the future of synesthetic art is justified, the scale of the

block will be measured in yards rather than feet; the quality of "reach out and touch it" realism will

be overwhelmingly convincing, and the varied happenings within the huge block of space will be

correspondingly impressive (ref. 5). The computer-based method of 3-D projection that can

achieve this near-perfect realism on such a scale is what is meant by the "supermedium" mentioned
in the rifle. Though it is not impossible that this supermedium will emerge as an outgrowth of the

stereoscopy and holography we know today, the limitations of both are just as likely to prove
insurmountable.

In order to stress that synesthetic art is as much concerned with sound as it is with pictorial

and sculptural kinetics (and eventually, with drama, performance, and narrative content as well),

the block of spatial activity will henceforth be referred to as an "event space." It could just as well,

however, be called a "stereo event space," in acknowledgment that 3-D projection by computer

stereographics, despite its limitations, will probably incubate development of synesthetic art for

many years to come.
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GENERAL FEATURES OF SYNESTHETIC ART

Synesthetic art has four essential features that determine the design and operation of the

computer-based system and how it is used to create synesthetic art. These features refer to (1) the

comprehensive multimedia character of synesthetic art, a feature that calls on the system to either
capture or simulate a wide variety of attributes and materials, both visual and acoustic, drawn from

many different forms of art; (2) the bimodal spatial synesthesia of image and sound, a feature that

enables the system to superimpose visual and acoustic elements and move them together in the

tlusory-projecfive event space; (3) the aesthetically integrated character of synesthetic art, a feature

that calls on the system to assist in organizing these disparate materials into a close-knit synesthetic

unity (an option, not a requirement imposed on users of the system); and (4) the extremely

integrated and task-oriented character of the system itself, a feature that calls on the developers of

the system and its software to take full advantage of the computer's ability to capture, generate,

process, and spatially manipulate both images and sounds by drawing upon resources as diverse as

computer graphics, image processing, computer music, and artificial intelligence, among the many

germane fidds and disciplines. - ....

The block diagram in figure 1 represents all four of these features in a general way. More

concretely, however, it also represents the five major blocks of software comprising the entire

synesthetic package of programs, along with the quite specific requirements associated with each

of these blocks. The diagram conforms to the standard format for such graphic representations,

with input at the top, output at the bottom, and everything associated with the ongoing manipula-
tion and control of the total mass of visu.d and acoustic information presented in the large central

panel, coded in light grey.

REQUIREMENTS OF THE SYNESTHETIC SYSTEM

Some of the more specific features of synesthetic art can be gleaned from this summary of the

requirements imposed on the computer system, because many of the features, functions, and

requirements of the system provide mirror reflections of synesthetic art itself.

Realism

During the start-up stage of synesthetic art, a high degree of realism is hardly an achievable,

or even desirable, objective. From the very beginning, however, some use of low-resolution,

generalized forms of realism are necessary, first for aesthetic variety and interest, and second as

steps in the direction of the narrative and dramatic realism associated with the long-term full

multimedia potential of synesthetic art. As an aspect of this eventual development, the degree of

near-perfect realism should be such that an observer peering casually into the event space might

easily fail to distinguish between the projected image of an object and the actual object itself. This

can be thought of as the ultimate "Turing test" for 3-D projection, a level of "reach-out-and-touch-

it" realism that may never be fully achieved, but that is useful nonetheless as an unambiguous

standard and objective for ongoing research and invention (ref. 6).
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Realism in synesthetic art, in whatever degrees and varieties it appears, will be achieved

through a method of real-world image capture that is basically photographic, whether involving
video, cinematography, or some other method. Or it will be achieved within the computer itself

through image synthesis "from scratch," using mathematical and algorithmic techniques along the
lines of solids modeling and ray tracing. Or the realism will be achieved through combination of

both of the preceding, or perhaps through a method yet to be developed. A key requirement would
seem to be a method of 3-D capture that digitizes the information as it is acquired, facilitating its

transmission into the computer and submission to the myriad form transformation operations basic

to this concept of synesthetic art

Abstraction

The second requirement shifts away from realism to the opposite end of the stylistic spectrum

in demanding that the system supply an endless variety of visual qualities and attributes having as
much to do with abstract art as with realism. These attributes, which are at the core of synesthetic

software along with objects they enhance, pertain to such basic elements as form, shape, color,

texture, pattern, tone, translucency, hard and soft edges, optical distortions, etc. Ideally, any of

the styles and iconography associated with 20th century visual art and its media-starting with

painting and sculpture, but also including photography, printmaking, computer graphics, computer
animation, video art, abstract film, laser sculpture, and light art-should be capable of being simu-

lated and, if necessary, translated into an effective 3-D equivalent idiom for integration into the

synesthetic mix. In time as the synesthetic software package expands, synesthetic artists should be

able to work in virtually any style conceivable, with no constraints other than those self-imposed

for expressive or aesthetic reasons. The objects mentioned in the Introduction, and their mutations
as arrays, regions, and total event spaces, are represented in the block diagram under the general

heading of "visual/spatial components."

A Choreography of Change and Motion

The third requirement of the synesthetic system and its software pertains to the choreographic

aspect of synesthetic art and to the ability of the system to adapt its visual elements to interesting
scenarios of change and movement within the event space. This time/dynamic component is

clearly choreographic in character, whether actual dancers are projected into the event space, or

whether the "dancers" consist of abstract shapes, colors, textures, or wisps of smokey ephemera

moving about and through one another.

This choreography has three aspects. The f'n'st is a choreography of change associated with
such terms as mutation, permutation, transformation, and metamorphosis; this has a topological

aspect as well. The second is a choreography of movement in space, a shift from here to there, or
of continuous movements over looping and interweaving paths of motion within the event space.

(See the panel labeled "object motion and motion paths" in the block diagram.) And the third

imposes a choreographic aspect on the timing of the change and motion events, which can acceler-
ate and decelerate, and involve modulated shifts of timing as complex and subtle as the graceful

movement of a ballerina, whose art consists as much in the timing of a movement as in the sculp-

tural shape and arc of the movement itself. (See the panel labeled "time/change/motion synesthet-

ics" in the block diagram.)
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Music and Sound

Just as the visual/spatial aspect of synesthetic art is able to draw upon and enlarge the entire

body of resources of computer graphics, the musical/acoustic aspect is able to do the same within

the closely associated fields of electronic and computer music. Important among these resources

are the many customized interactive devices (keyboards, pedals, sliders, dials, the insertion and

extraction of floppy disks) developed for composing and improvising computer music. Also

important is the fact that sounds, like images, can be either captured from the real world by micro-

phones, or synthesized through electronic or digital techniques (ref. 7).

Most important is the computer spatialization of sound that is so central to this concept of

bimodal synesthetic art. Evidence is plentiful that the existing, well-proven technique of spatializ-

ing sounds by computer is growing in use and aesthetic effectiveness. For example, just within

the past year, a spatialized composition of computer music was incorporated into a 45-ft open-form

sculptural construction as a bimodal mix that is almost borderline synesthetic (ref. 8). In fact, if
the sculpture itself, which is completely immobile, were kinetic in some way, and if the spatialized

sounds interacted meaningfully with the kinetic aspect of the structure, the work might approach

the synesthetic.

Production and Performance

The system and its software must provide its users with the means to work in a variety of

modes for creating many different kinds of synesthetic art. In addition to working direztly and
interactively with the system, the user should be able to take advantage of intelligent robotic and

quasi-robotic support when it is needed for a specific purpose-i.e., a fast-moving improvisation in

which the performer(s) could not possibly keep everything in hand without intelligent robotic sup-
port from the system. This robotic-type support is not only helpful, it is absolutely indispensable

when the system is sustaining an ongoing "hands-off" performance, a special way of using the
system that, depending on the inclination of the user, may involve either intermittent, frequent, or

constant intervention into what the system is doing. (If the intervention is constant, the user has

switched by definition into the fully interactive mode.)

Within these automated productions, an important subset is the transductive mode, yet
another hands-off situation that essentially replaces the artist as sole intervenor, with intermittent or

ongoing interventions from a variety of sources--interventions which are continuously mediated

and structured by discriminating and aesthetically "sensitive" robotic components within the soft-

ware. These intervening agencies in turn are made up of ambient energies, signals, and other

"information" such as light, heat, sounds, vibrations, barometric pressure, brain waves, heartbeat,

traffic patterns-many of the endless possibilities have for years been incorporated into diverse

forms of environmental, transductive, and "systems" art, some of them computerized, most of

them not (ref. 9). Clearly, synesthetic art produced in the transductive mode will acquire many

specific forms for many different kinds of users and applications, all of them so readily
interchangeable that the distinction between an amateur and a professional performance will tend to

blur (or will, that is, if the artist working with the synesthetic system wants it that way).

Not least important is the fully robotic mode, in which the system, driven by a program that

the artist has set up (or more rarely, may even have written, or possibly expanded), behaves like an

46-5



autonomousartistin its own right in producing either a continuous, ongoing work in the

performance mode, or a series of individual productions in the serial-robotic mode. This fully

robotic approach is not as far-fetched as it may seem; variations of it have been used for years by
some of the pioneers of computer art in this country, Europe, and elsewhere (ref. 10).

TWO PROJECTS ON THE FRINGE OF SYNESTHETIC ART

Synesthetic art as a concept has yet to produce an actual example of the genre to discuss or

reproduce here. Nevertheless, I have been involved with a number of projects peripheral to

synesthetic art over the years. These can be used to illuminate the subject, but should not be mis-

construed as examples of what is still an art of the future. From these I have selected two projects,
the first as an example of software oriented strictly to the robotic mode, and the second for its

combination of both interactive and robotic possibilities.

Applications of the Serial-Robotic Mode

An example of software capable of generating graphics in a serial-robotic mode is the largest
and most complicated of the programs I have designed and developed to date. Called SHAPE3D,

it was written during the middle 1970s with the help of two talented student programmers primarily
as an experiment in the serial-robotic design of sculpture. In addition, however, the project reflects

my long-standing conviction that the computer, in addition to its contribution to the creative aspect

of art, also will foster a new approach to research in art theory and aesthetics. More specifically,
the idea concerns a highly promising synergism of theory and practice between (1) the use of suc-

cessive series of serial-robotic productions as an innovative and potentially powerful approach to

computer-based research in art theory and the principles of design; and (2) the testing of the rules,
principles, compositional devices, etc., generated by this research through their use in the serial-

robotic production of various kinds of computer art. Of course, synesthetic art is obviously the

kind of computer art with the most to gain from this valuable source of robotic intelligence con-
ceming formal/syntactic structure-inducing algorithms and devices (refs. 11-14).

Operating with a vocabulary of 64 modular block-like elements and a set of 30 input parame-

ters, SHAPE3D is capable of generating serial-robotic runs of as many as 50 or 100 or more

graphics at a time, with never a duplicate composition in any series. The six graphics comprising
the group reproduced as figure 2 were selected from a number of different serial-robotic runs to

demonstrate the range of variations in style that can be obtained through various settings of the
30 parameters. The single unframed graphic in the group of six was selected from a serial-robotic

run of 150 compositions, the best of which was chosen as a model for the complete sculpture
shown as figure 3 (ref. 15).

Calligraphic Stereo-Sculpture

For 3 months during the fall of 1978, I collaborated with an associate on a project that used a
StereoRealist camera to record sequences of stereoscopic light calligraphies of the kind shown in

figure 4. Inspired by a famous Gjon Mili strobe photograph showing Picasso drawing in space

with a pen light, we purchased the stereo camera, collected an assortment of flashlights, colored
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gels, luminous objects, and objects that could be illuminated (including a number of translucent

plastic buckets) and set up a kind of event space in front of the stereo camera. As many as eight
successive swoops and splashes in space were superimposed on the fill in the camera to create

each of about 30 stereo-calligraphies. A setup not unlike the one described here would be useful

for collecting a large repertory of paths of motion on which to graft varieties of images and sounds.

Or a variation could be used to capture the events in toto-the rich colors and textures along with the

underlying paths. Or alternatively, the effects and the paths could be simulated through software,

or through combinations of capture and mathematical synthesis (ref. 16).

CONCLUSION

A concept of a new form of art called synesthetic art has been described, along with the char-

acteristics of the computer-based system required for its production. The profoundly computer-
oriented character of this form of art informs its relevance to themes and topics such as interactive

graphics, virtual 3-D displays and projection systems, user-system ergonomics, artificial intelli-

gence, robotics, and telerobotics. Preparing this paper has caused me to rethink, expand, and

clarify my thinking on synesthetic art, and has left me even more convinced of its significance and

virtual inevitability for the future of art. The progress of computer stereographics, in particular,

makes it especially timely to begin thinking about actual start-up projects in stereo-synesthetics-not

just a single project, but many of them, as the task is so multifarious and the directions that can be
taken so diverse. In addition, this paper should assure those readers involved in fields related to

spatial displays and instrumentation that aspects of NASA-sponsored research may have implica-
tions beyond NASA itself, beyond industry, business, and other obvious areas of possible appli-

cation. For spatial displays are relevant to art, especially to that kind of art which is computer-
based, time-variant, synesthetic, and looks forward to what is going to happen in the next century.
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real-time operation.

6The Turing test is the classic test for artificial intelligence proposed by Alan Turing, the

British mathematician and computer scientist. Questions are passed to a computer and a human

respondent hidden behind a curtain and the answers are passed back in written form. When it is

impossible to distinguish between the answers provided by the computer and those by the human

respondent, the computer can be said to have the level of intelligence of a human being. I pro-
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Six Levels of Cybernetics," Artfgrm, May 1969.

7j. Chowning, "The Simulation of Moving Sound Sources," JAES, Preprint no. 726(M-3)
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sented at the Chicago International Art Exposition at Navy Pier in May 1987. The sculpture con-
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by 12- by 9-ft installation. Four sets of four speakers embedded in portions of the sculpture pro-

vide the electronic and computer-generated music, which is recorded on tape for replay every

20 rain. The sounds, as they execute varied choreographic patterns between four sets of speakers,

are heard differently in different parts of the work by those circulating around and through it.
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the Russian non-objective painter Kandinsky (ref. 13), and to that of the American abstract painter
Diebenkorn (ref. 14).
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15This modular composition was created for an exhibition of the University of Massachusetts

at Amherst sculpture faculty held in one of the university galleries during the spring of 1978. The
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that SHAPE3D is capable of generating, manipulating, and plotting as serial-robotic compositions.
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cloth over the open lens while the luminous "brush" was being replaced with another for the next

calligraphic event.
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Figure 1.- Synesthetic supermedium.
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Figure 2.- Variations of serial-robotic runs.
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Figure 3.- Complete sculpture chosen from a serial-robotic run of 150 compositions.
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WIDE-ANGLE DISPLAY DEVELOPMENTS BY
GRAPHICS

William A. Fetter

Research Director, SIROCO

2165 156th Avenue Southeast

Bellevue, Washington

COMPUTER

SUMMARY

Computer graphics can now expand its new subset, wide-angle projection, to be as significant

a generic capability as computer graphics itself. My purpose is to present you with some prior

work in computer graphics leading to an attractive further subset of wide-angle projection, called

hemispheric projection, to be a major communication media. Hemispheric film systems have long
been present and such computer graphics systems are in use in simulators. This is the leading edge

of capabilities which should ultimately be as ubiquitous as CRTs. The credentials I have for mak-

ing these assertions are not from degrees in science or only from my degree in graphic design, but
in a history of computer graphics innovations, laying groundwork by demonstration. I believe it is

timely to look at several development strategies, since hemispheric projection is now at a point
comparable to the early stages of computer graphics, requiring similar patterns of development

again.

POLARITY

Nobel Prize winner, Dr. Herbert Simon of Came#e-Mellon University, in his book SCIENCE

OF THE ARTIFICIAL, characterized the natural sciences as the pursuit of "what is," and the sci-

ences of the artificial (which includes design), as the pursuit of "what should be." It occurs to me

that NASA, more than any institution in history, has to stretch itself to the extreme ends of these

polarities as well as cover the complete spectrum between. In designing vital systems, it must
reach into the future, championing far-sighted objectives while using the most rigorous scientific

knowledge, especially human performance. Each of these polarities has an organizational counter-

part which can effect patterns of achievement. In the early stages of a new development, I believe

it is fitting and effective to operate in the "what should be" mode, with attention to, and migration
toward, the "what is" mode.

BACKGROUND

Computer graphics efforts have included a number of research and development paths such as

simulations of cockpit visibility, human figure performance, operations analysis and wide-angle

projection. Many of these paths were firsts and many of these were followed up over decades in

three work environments, Boeing, SIU-C, and SIROCO. This work often stimulated others by

showing "what to do," helping to spawn some of the computer graphics capabilities we see today.
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Theapproaches taken can be usefully applied to the development of an array of hemispheric-

projection display-system applications.

COMPUTER GRAPHICS

The term computer graphics was coined about my initial work at the Boeing Company in 1959.
I cannot claim that I coined the term, as some have suggested, because, in reality my supervisor,

Verne Hudson, both authorized my proposal to work in this area and further suggested shortening

my longer project title to just the two words.

This effort began with a research letter defining a near-term effort. It also listed the ultimately

sought attributes of computer graphics, which included many of the visual characteristics in the

field today. This work also achieved the landmark Bernhart-Fetter patent on perspective images

generated by digital computer. An organization was assembled to form a close relationship
between research, demonstrations and direct applications to needed tasks.

The overall goals of more accurate, reliable, and clear images are sought in advancing hemi-

spheric display systems.

The precursor to my computer graphics innovations at Boeing was a hand plot, which I then

illustrated in the process of designing a book. During graphic design assignments at the University

of Illinois Press Art Division, I designed the book SPACE MEDICINE for Werner Von Braun. I

felt that an illustration of his space station concept should appear in orbit on the title page and that it

should be as accurate as possible, in part, an homage to Chesely Bonestele. So that it would be

precise, I plotted points by hand, using a technique that eliminated the vanishing points then taught
in schools. The tiresome degree of repetition in the process and the emerging claims for computer

capabilities convinced me that at some time in the future I would have a computer assist this

process.

Now let us look at the efforts at the Boeing Company during the 1960s by glimpsing several

lines of research and applications to aerospace requirements.

1. Eye: All of our activity was directed to more effectively reach the eye/brain complex in

support of engineering design.

2. Computer Interior: The task was to utilize any existing computer system available to us at

Boeing in order to carry out the production of useful images and series of images.

3. Communication Need: We developed an approach of defining our communication work

within a spectrum of needs to be met.

4. Communication Media: We made every effort to relate the need to specific media and to

integrate computer graphics into that flow.

5. Boeing 747: Static output was produced using computer graphics axonometrics and per-

spectives such as this Boeing 747. We merged our work with such related capabilities as master
dimensions.
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6. Carderlanding: Moredynamicapplicationsincludeddozensof color/sound motion pic-

tures, on all major Boeing designs of the 1960s.

7. SST Mock-up: Support to mockups included the Supersonic Transport 60-ft-wide dio-

rama of precise views at the 100-ft decision point.

8. First Man: Human figure simulations were applied to 747 and space cockpit studies of

reach and instrument vision, using 100 body sizes.

9. Hemispheric: Preliminary software was demonstrated for stimulus material to be pro-

jected on the interior surface of a hemisphere.

10. Interactive: Studies of interactive human factors computer graphics included anthropo-

metrics, visibility, and other applications.

(Our disseminations stimulated other manufacturers' work. For example, GE, seeing our

Runway Visual Range studies, was able, with their outstanding capability, to produce more

advanced fog simulations.)

11. 747 Polar Plot: An early purpose for wide-angle projections, in this case a Mercator

projection, was the first computer graphics polar plot to aid in meeting FAA requirements for the

Boeing 747 visibility.

12. Screen Angle: Our efforts to explore wider viewing angles made it desirable to gain fur-
ther human factors information such as Dreyfuss.

13. Human Factors in Design: In seeking out information we wanted to design systems not

interfering with other human factors parameters.

14. Pacific Science Center: This hemispheric display facility for films designed by Boeing in

Seattle was useful and convenient.

15. First Test: Some of the early tests did not yield a perfect match and the geometry of the
software had to be rewritten.

16. Room Test: The next successful tests included one showing visual effects of sitting in a

square room viewed inside a hemisphere.

17. 747 Cockpit: Among the test applications made was the 747 cockpit windows displayed
as seen from the interior.

(We also proposed to use the hemispherics in the E series 747 aircraft for high-level decision

makers to rapidly apprehend complex displays.)

18. Vulnerability: An application to vulnerability studies used the similarity of hemispheric

geometry to the geometry of airburst threats.

47-3



19. NASA: A potential application with NASA Public Relations was to use telemetered dis-

plays for better public understanding of the space effort, including output to television or hemi-

spheric facilities.

Now let us look at our hemispheric path of work at Southern Illinois University at Carbondale

during the 1970s, to apply this to more comprehensive design issues.

1. Computer Graphics Research: At the SIU-C Department of Design in the 1970s, we
conducted further computer graphics research under the sponsorship of the SIU-C Research and

Projects Office, the National Science Foundation, and other private sector sources.

2. Association of Science/Technology Centers: As an outgrowth of the earlier NASA public

relations study and the new goals at SIU to develop Buckminster Fuller's advanced concept of a
World Resources Simulation Center, we again looked at the potential of existing hemispheric facil-

ities that could convey necessary information to the public. A related project involved an SIU
committee on Earth Resources and a period of time spent at NASA to determine types of satellite

imagery available that might be processed through this type of facility.

3. Pacific Science Center Spacearium: During the 1970s, the modest research funding lev-

els limited the tests to projecting glass slides. Mose of these centers have geometry which does not

exactly match.

4. 70-MM Wide-Angle Film: Sample film from the Spacearium shows the identical distor-

tions our test plots matched. Members of the Psychology Department at SIU-C found the possi-

bilities for group interaction and decision-making in such a system to be promising. Among the

more obvious advantages were the wide field of view, absence of extraneous visual elements, and

the resulting complete attention by the observer. Among the more obvious disadvantages were the
cost, complexity, and size of the systems then available or fundable to build.

Now let us look at the hemispheric research path at SIROCO, an independent research institute,
in the 1980s.

1. Yards, Feet, Inches: At SIROCO, the perimeter folding problem was solved and special

attributes of hemispheric displays were studies. One attribute was maintaining orientation within a

display of a hierarchy of facts and images. A simple example here is yards, feet, and inches.
While the full effect cannot be seen in a simple fiat slide example, the advantages are more apparent

in hemispheric images.

2. Earth: To demonstrate the value of a capacity for great changes in scale, needed for a

world resources center, a long zoom was created.

3. United States: The zoom continues toward the United States.

4. Illinois: We continue, showing Illinois county boundaries.

5. Carbondale: And on to the street grid of Carbondale, Illinois.

6. Human Figures: And f'mally to the scale of two human figures.
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7. Color: The images can be in color. The sequence outlined previously ends with our

human figure, which is based on only one data base of an infinite number of accurate surface defi-

nitions of anthropometric percentiles and somatotypes. This rendering was done in a joint activity
with the Lawrence Livermore National Laboratory using Frank Crow's HILITE, Steve Williams'

updates.

In 1978 at SIROCO, we made a proposal to NASA on hemispheric display. This was

approved for scientific merit; however, it could not be funded. In 1981, in assisting the SIG-

GRAPH committee which sponsored the annual meeting in Seattle, we worked successfully to

reinstate the showing of Nelson Max's IMAX film demonstration of wide angle. In 1984 our

original work helped stimulate SIGGRAPH's OMNIMAX f'dm production.

Where is hemispheric going? I believe the answer is EVERYWHERE. At NASA, both hemi-

spheric and spheric displays are already used in existing and emerging simulators. In future space

flights, hemispheric projection should f'md its way into the crew's flight deck, work stations, and
entertainment stations. In communicating with computers, there is just as large a bottleneck at the

visual interface as at the internal bottlenecks that gave rise to parallel processing. Hemispheric

projection can contribute solutions. Elsewhere, hemispheric technologies that emerge should

benefit from economy-of-means in both computing and visual systems. Only a small proportion of

a complete hemispheric image needs to be generated for many applications using head-mounted

displays. With the costs for computer capacities dropping dramatically, even processing all the
pixels should become practical for more applications.

CONCLUSION

There are fundamental human factors issues involved in this new tool. We should build

generic systems rather than reinvent each application. We should, I believe, develop a location for

multipurpose breadboard demonstrations with the balanced support and stimulus of a wide variety

of relevant technological expertise. Further, we should explore whole new communication
modalities such as "Orientation Graphics," "Discovery Graphics," and "Analogy Graphics." Spin-

offs in miniatured, low-cost systems should find their way into offices and work stations.

I have presented my personal experiences over a period of years because there are elements of

these early holistic approaches needed now. NASA may be the best institution in which to explore

this since at NASA, as in hemispheric displays, we are at just the beginning of practical visions of
the future that are all about us.
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INTRODUCTION

In recent years, there has been a rapid growth in the ability to obtain detailed data on large
complex structures in three dimensions. This development occurred fast in the medical field, with

CAT scans and now magnetic resonance imaging, and in seismological exploration. With the

advances in supercomputing and computational fluid dynamics, and in experimental techniques in

fluid dynamics, there is now the ability to produce similar large data fields representing 3D struc-

tures and phenomena in these disciplines.

These developments have produced a situation in which currently we have access to data which

is too complex to be understood using the tools available for data reduction and presentation.

Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D

systems they are measuring and simulating.

HISTORY

In response to this, there is growing activity in the area of visualization of 3D data. Some early

work in this area was done by Harris et al. (1979) at the Mayo Clinic and Herman et al. (1984) at

the University of Pennsylvania in the area of medical imaging. In 1983, Jaffey, Dutta, and

Hesselink (1984) approached the subject from a different direction. They developed the "source-

attenuation" model, and used holograms to visualize 3D subjects. More recently, there is stronger

emphasis on interactive visualization, and concentration on techniques and systems for general use

and commercial products (Goldwasser, 1985; Hunter, 1984).

Much of the recent activity is directed toward improving and extending the use of graphics

techniques for interactive visualization of data based on surface representations. The groundwork
for this was done by Herman et al. Work in this area is continuing both in academic groups

(Herman at the University of Pennsylvania (Herman et al., 1984 and Fuchs at North Carolina

(Fuchs et al., 1985), and in several commercial ventures (notably CEMAX)). Also, graphics pro-

jects at NASA, JPL, and aerospace corporations have been providing increasing support for visu-

alization tasks based on conventional graphics concepts.

The more interesting projects involve departures from conventional graphics. By careful use of

transparency, it is possible to produce images of 3D systems which provide true volumetric visu-

alization, rather than surface projections. We have been working on this type of system for the

past three years (Russell and Miles, 1987), concentrating on techniques which are efficient enough

1G. Russell currently at IBM T. J. Watson Research Lab, Yorktown Heights, N.Y. 10598.
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to be used interactively on existing computer systems. Pixar Corporation has recently been devel-

oping a package to support volumetric visualization, including an approach called Volume
Rendering Technique, which they developed with Phillips Medical Systems and Dr. E. Fishman

(1987) of Johns Hopkins University. This package is perhaps the most comprehensive image-

based system commercially available at this time.

An approximation to volumetric imaging is also provided in PLOT3D, a graphics software
system developed at JPL. This package includes a facility for producing nested transparent con-

tour surfaces from a volumetric data base, which provides surprisingly good visualization of the

data. Its prirnary limitations are data size (about 100,000 data points) and the number of contours
it can support. Also, since this is a rather symbolic representation, it must be interpreted with care.

VOLUMETRIC VS. 2 1/2D VISUALIZATION

Normal pictorial illustration (stills), and most widely used 3D graphics techniques are limited to

providing 2 1/2D surface images. That is to say, along any line of sight there is only one object or

surface visible. This usually produces pictures from which a rough idea of the three-dimensional
structure of the original scene can be deduced. In contrast, X-ray images generally do not have a

unique interpretation as projections of some three-dimensional subject, and even X-ray stereo pairs

are insufficient to provide an unambiguous interpretation without a priori knowledge about the
subject.

This is a computational constraint which applies not only to visual observation of pictures, but

to interpretation of volumetric projections in general. Vision, however, is capable of limited volu-
metric perception and comprehension, if given adequate stimulus.

In order to achieve effective volumetric perception, it is necessary to present volumetric data in

a form that vision is accustomed to dealing with. While cross sections are often useful for detailed

study of internal features, it is difficult or impossible to fully comprehend the 3D structure of an

object in this manner. Instead, data must be presented as we would see a real object. Natural

visual processing transforms this information back into a mental structural model. Volumetric

characteristics of the data are conveyed by making the projection TRANSPARENT, as implied in
the earlier discussion.

The requirements for volumetric perception are basically the same as for computed axial

tomography. A set of projection images from many different viewpoints is computationally suffi-
cient to reconstruct the internal details of a subject. Visual reconstruction has several added con-

straints: the images must be presented as an ordered sequence of closely spaced views, and they

must be shown at a rate of at least 8 to 10 frames/sec. These constraints are dictated by the tempo-

ral character of visual perception.

For perception of volumetric structure (rather than surface structure), complex optical phenom-

ena such as lighting and shading, specular (surface) reflections, and diffraction and diffusion are

not useful. In fact, these effects generally make the basic structure of volumetric scenes more dif-
ficult to understand, overwhelming the viewer with fine details and optical distortions. Simple

luminance and opacity are adequate for volumetric visualization.
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SYSTEM IMPLEMENTATION

We have developed a system at Princeton which implements this approach to volumetric visu-

alization on a PC/AT (Russell and Miles, 1987). The algorithms upon which it is based are effi-

cient enough to provide a usable off line visualization system on the AT (precomputed images take

approximately 1 min/view for 2 million data points) and they are suitable for development into a

real-time interactive visualization system using current state-of-the-art commercial hardware

(AT&T Pixel Machine, for example).

The model for the system has the following characteristics.

1. Data consists of samples on any regular 3D lattice (e.g., simple cubic, face-centered cubic,

hexagonal close packed).

2. The data elements are treated as nebulous, fuzzy regions localized around the sample coor-

dinates. (i.e., no subvoxel definition--consistent with proper sampling technique).

3. Optical model includes luminance and opacity control at each data point, with the possibility
of handling a light source (no refraction or specular reflection).

4. Views are computed directly from the data, without any intermediate representation. This

reduces the risk of artifacts and avoids simplification of the data that may lead to the loss of
features.

5. Perspective is not supported (this is subordinate to motion).

This combination of characteristics yields a model which is well-behaved and computationally

efficient, with enough flexibility to provide a broad range of visual effects.

The implementation on the PC/AT operates in a two-step process. For a given data base, a

sequence of views is computed, based on a selected set of optical characteristics onto which the
data are mapped, and a viewpoint and axis of rotation for the data. Each image takes about 60 to

75 sec, for a typical data base of 2 million samples (e.g., 32x256x256 or 128x128x128), and we

usually generate anywhere from 15 images (for a restricted range of views) to 120 images (for a

full rotation of the data). The images are stored on a disk as they are generated. When a sequence
is complete, the images are loaded by a second program for viewing. Up to 180 clipped images

(176x176) may be loaded into 6 Mbytes of RAM on the PC/AT. They may then be viewed as a

movie on a full-color, 8-bit greyscale display at frame rates up to 15 frames/sec. The viewpoint is

controlled interactively using a mouse, within the precomputed range.

EVALUATION

This method of visualization provides good comprehension for a range of subjects and optical

characteristics. Its most significant advantage is that it is very robust. There is little or no prepro-

cessing of the data, so there are generally no computational artifacts. Even data containing no

distinct surfaces can be accurately visualized, since this method does not rely on surfaces as the
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fundamentalelements of a scene. The use of motion as the means of communicating structure

allows all the data to be made visible through the use of transparency. This provides a high degree

of confidence in the resulting visualization. It is also robust in the sense that an informative set of
images can be produced using simple optical characteristics (luminance = data value, high trans-

parency) with little or no a priori knowledge about the data itself.

The motion/transparency approach is most effective with scenes of moderate complexity (such

as that shown in Fig. 1), that is, scenes whose structure can be largely comprehended as a whole.

With very complex scenes, containing perhaps hundreds of detailed components (e.g., a video

cassette recorder guts), this type of visualization suffers from showing too much information,

which cannot be fully comprehended as a single entity.

COMPLEXITY

The issue of complexity arises in visualization for two distinct reasons. The In'st is the visual

limitation just mentioned. The mind is incapable of performing a complete internal reconstruction

of a volumetric scene, as is done in a CAT scan, for example. We have observed that beyond a

certain level of complexity in depth (apparently three to four layers of structure), the mind's ability

to maintain a conceptual model of a scene begins to fail.

In addition to the visual/conceptual limitation, there is an optical constraint which limits the

degree of complexity which is practically acceptable. There is a tradeoff between the amount of

transparency used (which affects the visibility of embedded structures) and the amount of contrast

available in small features. This is directly related to signal-to-noise (S/N) ratio. Vision does not

have particularly large S/N ratio, so fine details quickly lose definition as transparency is increased.

This is also a limiting factor in CAT scans, but the devices used have much higher S/N ratios, so
much lower contrast can be tolerated in CAT-scan source images than is detectable visually.

These considerations provide strong motivation to develop means of reducing and controlling

the level of complexity in volumetric visualization.

THE ROLE OF BINOCULAR VISION

From a very early point in our investigation of visualization, it was clear that stereo pairs were

inadequate as illustration of volumetric scenes. Once we had a working visualization system based

on motion, it was easy to see how much more comprehensive this approach is than static stereo
viewing. For some time, we assumed that adding stereopsis to the motion-based system would

not be worthwhile, since static experiments suggested that stereopsis would not work well on pre-

cisely those scenes where some improvement was needed. Specifically, scenes with extensive

volumetric content and high complexity, such as medical data, generally have low contrast and few
clearly def'med, unique features on which stereopsis can operate. For scenes which are visualized

with low transparency, which provides more distinct features, stereopsis is not really needed since

these scenes are generally quite easily understood with only the motion-based visualization.

48-4



When we actually were able to try out stereo and motion together, the results were somewhat

surprising. With scenes of medical data with moderate to high transparency, static stereo viewing
is relatively ineffective, as expected. However, when motion and stereo viewing are used

together, the stereopsis provides noticeable enhancement to the visual perception of the structure
over motion alone. There is apparently some interaction between the visual mechanisms which use

stereo and motion to deduce structure. The combined effectiveness suggests that stereopsis is

facilitated by information made available by motion, which perhaps allows better feature matching

between images, resulting in more and better disparity measurements.

This strong interaction between stereopsis and motion perception means that stereopsis must be

considered as an important part of any visualization system. Though motion is very powerful
alone, considerable enhancement is possible through the use of binocular vision.

CONCLUSIONS

This approach to visualization, using transparency and motion in an image-based system, has

significant advantages over systems based on solid rendering or graphical modeling. Most signifi-

cant are the broader range of volumetric structure which can be visually represented and the

robustness and freedom from artifact which volumetric visualization provides. A comprehensive
visualization facility should certainly include the ability to perform both image-based and graphical

rendering, and in the future these techniques should be increasingly integrated to allow both
graphical and image-based components . a single visualization.

Computers are now becoming available which will be capable of performing visualization tasks

interactively. This will dramatically change the way in which visualization is used, particularly for

very complex subjects. As interactive visualization becomes more practical, the current emphasis
on development of techniques for data reduction and rendering should be supplanted by the need

for means of controlling and interacting with the visualization process. As the potential degrees of

freedom for controlling a visualization increase with the complexity and size of scenes, the design
of effective control mechanisms will be a difficult endeavor.

Some simple control mechanisms, such as clipping, spatial editing tools, and 3D cursors, are

relatively easy to implement. However, for complex data, control mechanisms should parallel the

way in which structures are decomposed and manipulated conceptually. This means providing the

capability to specify the structural components of a scene and control their visual characteristics by

referring to them as objects. Automated or computer-aided object segmentation is required to make

this practical, but for the purpose of interactive control of visualizations, the accuracy and reliability
of segmentations need not be as high as it must for conventional, noninteractive visualization.

Additionally, it may be useful to be able to produce geometric distortions of data in order to

push obstructing objects out of the way without separating them altogether from the region of

interest. The net effect would be to produce the equivalent of an exploded view for structures of

nondiscrete components. This would be particularly useful in medical applications. If information

about connectivity and stiffness can be incorporated into the process, this could make the visual-

ization system even more useful in surgical training or preoperative planning environments, where

the mechanical properties of tissue structures is very important.
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Advanced modes of interaction will become more and more important as volumetric display is

applied to more ambitious problems of data interpretation.

This work was supported by Princeton University School of Engineering. Additional support
for G. Russell was provided by the Office of Naval Research through their Graduate Fellowship

program.
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Figure 1.- Vortex rings resulting from the Crow instability. Navier-Stokes simulation data pro-
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